
2023/24

Comprehensive Creative Technologies Project:

Machine Learning in Procedural Content

Generation

Kieran De Sousa

kieran2.desousa@live.uwe.ac.uk

Supervisor: Louca Coles

Department of Computing and Creative Technology

University of the West of England

Coldharbour Lane

Bristol BS16 1QY

Abstract

Procedural content generation (PCG) is a technique used in video game development to algorithmically

create content, and is often used for visual creation. Machine learning (ML) is being explored as a
substitute for human testing.

The project explores and evaluates the creation of functional game content with PCG, the training of ML
agents in this content, and the evaluation of generated content for engagement through trained ML
agents. The project concludes by discussing the strengths and weaknesses of the implementations of PCG
and ML, and the effectiveness of engagement data in influencing new PCG outputs.

Keywords: Machine Learning, Procedural Content Generation, ML Agent, Engagement

How to access the project

The project repository can be accessed at: https://github.com/Kieran-De-Sousa/ML-Procedural-Content-

Generation

Screenshot/ image of the work (600 pixels high x 800 pixels wide .jpg)
This image may be used for the degree show booklet. For white backgrounds please use 1/2pt black border.

mailto:kieran2.desousa@live.uwe.ac.uk
https://github.com/Kieran-De-Sousa/ML-Procedural-Content-Generation
https://github.com/Kieran-De-Sousa/ML-Procedural-Content-Generation

2023/24

Kieran De Sousa 19007744

2

The project viva video can be accessed at: https://youtu.be/ntM_Sgg6gpA?si=Zh6yP5F_6sixF7Ka

1. Introduction
In the context of video game development,
procedural content generation (PCG) is often

associated with asset creation, such as
environments, or non-player characters. Video
games like The Binding of Isaac (McMillen, 2011)
and Enter the Gungeon (Devolver Digital, 2017)
utilise procedural generation to create gameplay
variation, by connecting individual rooms created
by a level designer to create a level. This project

aims to explore the integration of Machine

Learning (ML) in PCG to enhance quality and
engagement in PCG outputs; these outputs being
individual room levels of a top-down, 2D video
game created in Unity (Unity Technologies,
2022).

Using PCG to create levels runs into problems for
developers, such as resources and time being
required to test outputs, and manual editing of
PCG methods based on the results of this testing.
Using ML, ML agent feedback could be used as a
substitute for user testing to improve PCG

outputs. The importance of investigating ML in
PCG lies in its potential to automate gameplay
level creation and assessment, saving developers
time and resources which can be allocated

elsewhere in the video game deliverable. The
project explores beyond the typical use of
generating environments for appearance, and

investigates content generation focused on
gameplay quality.

The project seeks to answer whether ML can
effectively assess generated levels for quality
(engagement), with its inspiration stemming
from the potential streamlining of development

for both small-scale and large-scale game
studios. The potential benefits of PCG efficiency,
gameplay quality, and development cost
efficiency, through ML are key motivators for
exploring its use in video game development.

1.1 Project objectives

• Develop a PCG tool that creates
interactive level rooms in Unity.

• Develop and train a ML agent that

replicates typical player behaviour.

• Develop a system for improving PCG

outputs based on ML agent engagement
data.

1.2 Key deliverables
• A PCG system that creates interactive, top-

down, 2D room levels through algorithms

such as random generation, and A*
pathfinding.

• A trained, ML agent that behaves similarly to
a human player, that rewards (engages)
itself through room exploration, and item
collection.

2. Research questions
The project explores the following research

questions, focused on ML, PCG, and the

integration of the two:

• How accurately can ML agents simulate

human player behaviour?

• What PCG techniques can be used to

generate interactive gameplay levels?

• How effective is machine learning (ML) as a

method for improving procedural content
generation (PCG) outputs?

• How does feedback from ML agents on PCG
outputs compare to feedback from human
testing?

3. Literature review
3.1 Procedural Content Generation
Procedural Content Generation (PCG) “is the

algorithmic creation of game content with limited
or indirect user input” (Togelius, 2011). The
definition stems from Togelius et al. research into
what PCG is, with discussion first starting on
what PCG is not. PCG is not “offline” and “online”
player-created content, by developer or player,
but is closer to being “random”, “adaptive”, or

both, algorithmic generations of game content.

One of PCG’s first uses in video games is seen in
dungeon crawler Rouge (A.I. Design, 1980),
which used dungeon generation as its PCG

method. A PCG level was randomised through a

seed upon the player leaving the previous level
by walking down a set of stairs (Procedural
Content Generation Wiki, 2016). Games like The
Binding of Isaac (McMillen, 2011) and Enter the
Gungeon (Devolver Digital, 2017) similarly utilise
dungeon generation to create levels by
connecting rooms together through corridors.

Differing from this, platformer video game
Spelunky (Mossmouth, 2008) main gameplay
loop is centred around its PCG implementation,
with generated dungeons being entirely unique.
Spelunky’s 4x4 grid (16 rooms) generation
follows parameters around its four different room

types, where a valid solution path to complete

the level is generated first, and unoccupied grid

https://youtu.be/ntM_Sgg6gpA?si=Zh6yP5F_6sixF7Ka

2023/24

Kieran De Sousa 19007744

3

spaces generated with “side room” style rooms
(Kazemi).

PCG can be achieved through different methods

and techniques depending on suitability,
including Cellular Automata and Wave Function
Collapse. When developing the artifact, these
algorithms were researched for applicability.

3.1.1 Cellular Automata
Cellular Automata (CA) is a method of PCG that

uses a grid of cells that each have a finite
number of states (Adams, 2017). Over a number
of time steps, the state of each cell changes
depending on a set of rules which are based on
the states of neighbouring cells. Cave generation,

the generation of cave systems and underground

environments, is one of the most common
applications of CA in video game development,
as the rule-based states of neighbouring cells are
effective at creating natural and complex looking
cave structures.

CA might be used over other PCG methods due

to being computationally inexpensive, making it
valid for real-time applications, such as fluid
dynamics in video games. Games like Minecraft
(Mojang Studios, 2011) and Dwarf Fortress (Bay
12 Games, 2006) use CA, with the former using
CA rules for simulating water flowing, fire
spreading, and prior to version 1.17, the

“biomes” (style) of each region in the world.

3.1.2 Wave Function Collapse
The Wave Function Collapse (WFC) algorithm is a
texture synthesis algorithm initially developed by
Maxim Gumin (2016). WFC started seeing use in

PCG for its effectiveness in creating complex
patterns in generation based on its inputs. WFC
follows similar principles to quantum mechanics
in the form of superposition, which is when a
particle (or tile in WFC) exists in multiple states
at the same time. WFC divides a tile-based level
into small chunks, with each tile existing in

superposition. Constraints reduce the possible
states of these tiles until they are eventually in a

single state, “collapsing” the tile. The final output
of all collapsed tiles results in a pattern, or level
generated. Real-time strategy game Bad North
(Plausible Content (2018) utilises WFC for
generating its islands.

WFC might be used over other PCG methods due
to versatility; with open-source examples and
versions available for multiple programming
languages like C++ and Rust, and video game
types such as 2D, and 3D. The artifact is

designed around 2D, top-down constraints, which
has been shown as working effectively with WFC
algorithms.

3.2 Machine Learning

Machine Learning (ML) “is a category of artificial
intelligence that enables computers to think and
learn on their own” (Alzubi, J, 2018). The term
“machine learning” stems from pioneer of

artificial intelligence (AI), Arthur Samuel, in 1959
where he developed one of the first self-learning
systems through work on computer checkers.

ML continued development into different
methods, including reinforcement learning (RL)
and supervised learning (SL). ML’s most

apparent use in video games development was
the improvement of game AI systems such as
non-player character (NPC) behaviour, seen in
games like Creatures (Creature Labs, 1996), and
Forza Motorsport 7 (Turn 10 Studios, 2017).

When choosing to implement ML, it is important
to consider the different paradigms available,
and to select which is most appropriate.

3.2.1 Reinforcement Learning
Reinforcement learning (RL) is a machine
learning paradigm that aims to improve agent

performance through trial-and-error experiences.
An agent’s goal is to maximise a reward or to
complete an objective by using received
feedback to adjust its actions. Reinforcement
learning “dates back to the early days of
cybernetics and work in statistics… and computer
science” (Kaelbling, 1996).

RL differs from other paradigms like supervised
learning, for example: In RL, after an action of
an agent, the agent is immediately told their
reward and the next state they will be in, but are
not told what action would have been best in

their long-term (future rewards). This makes RL
suitable for “search and planning” based-
scenarios, which can be commonly found in video
games, such as high score maximisation.

RL’s first use in video games is often attributed
to Creatures (Creature Labs, 1996), an artificial

life simulation game created by lead programmer
Steve Grand, a computer scientist. The player

would raise, and train virtual creatures called
“Norns”, which would exhibit more complex
behaviours and learning patterns due to their
utilisation of neural networks, which would over
time develop based on interactions from the

player and their environment. Creatures, and its
series spanning three main games, were
financially and critically successful, with all
employing RL for AI behaviour.

In applications as a game development tool,

Forza Motorsport 7 (Turn 10 Studios, 2017), a
racing simulation game, utilised ML and RL to
improve their “Drivatar System”. Drivatar is Turn
10’s advanced AI driving system for the Forza
series, and was improved in factors of realism

using ML. Agent’s were trained to race around

2023/24

Kieran De Sousa 19007744

4

individual racetracks 26,000 times (Esaki, C.
2023) to learn the fastest racing lines, and in
gameplay, these agents might factor in human
mistakes into their behaviour to improve realism,

such as braking too late for corners.

3.2.2 Existing machine learning tools in
Unity
In the Unity ecosystem, existing tools for ML are
available, the most notable being the Unity
Machine Learning Agents Toolkit plugin (ML-

Agents) (Unity Technologies, 2017). ML-Agents is
an open-source project that gives developers
tools to create and train intelligent ML agents
using ML algorithms, such as supervised learning
(SL) and reinforcement learning (RL). As the

algorithms and implementation has been

simplified to a downloadable plugin for Unity,
development time can be focused and allocated
towards the development of expected agent
behaviour.

ML-Agents major strength comes from its variety
of example projects that showcase different use

cases for the tool, along with providing
developers useful starting points to streamline
development. Examples include “Basic”, which
uses RL to teach an agent to move towards a
reward sphere in a 2D space, and “GridWorld”,
which uses RL to teach an agent to avoid
obstacles to move towards a goal in a grid-world

space. Along with this, extensive documentation
and courses like Immersive Limit LLC’s “ML-
Agents: Hummingbirds” course (Immersive Limit
LLC, 2020) provided useful information in the
development of the artifact. The course discusses
implementations of RL, through reward structure

creation, and training and re-training, to create
intelligent agents in a 3D environment, which
found high applicability in the artifacts 2D
environment.

3.3 Procedural Content Generation via
Machine Learning (PCGML)

Procedural Content Generation via Machine
Learning (PCGML) is “the generation of game

content by models that have been trained on
existing game content” (Summerville, 2018).
Summerville’s research into PCGML is centred
around content being generated “directly” from
the ML model, meaning the outputs of a

machine-learned model is itself interpreted as
content.

Similar to the artifact, the research focuses on
the creation of “functional” game content
generation as opposed to “cosmetic” game

content generation. Functional content
generation might include the placement of
enemies, the layout of game levels, and the
placement of interactable elements (items,
buttons), to enhance gameplay experiences.

Cosmetic content generation might include

visuals (textures, scenery), to enhance game
immersion.

Summerville’s research into PCGML suggests

several use cases and applications in game
development. Autonomous generation is the
“generation of complete game artifacts without
human input at the time of generation”; with
PCGML, a designer might create artifacts in the
target domain as the model for the generator,
and then the chosen PCG algorithm can generate

content in this style, avoiding the need of
designers to turn their design intentions into
code, saving development time and expenses.

PCGML also offers a lower barrier to entry for

developers to generate functional game content,

as a programming language is not required to
specify generation of acceptance criteria. Content
design in PCGML is AI-assisted, with a human
designer and an algorithm working together to
generate content; as the designer is training the
ML algorithm through examples in the target
domain, the inputs and outputs required of the

ML algorithm is given by the designer. This
results in no need for a programming language
to communicate to the ML algorithm.

4. Research methods and Ethics
4.1 Research methods
The research methodology for this project

consists of secondary research, comprising
books, journal articles, research papers, and
code documentation; on the topics of PCG, ML,
and both. The main resources for obtaining
research are Google Scholar, and GitHub
(GitHub, 2024).

Secondary research was chosen due to the
plethora of primary research conducted on PCG
and ML. By using this primary research, the
artifact can build on established knowledge, and
utilise recognised techniques.

Secondary research and application were split
into the following:

• Discovery of existing literature and

techniques in PCG and ML, which were noted.

• Evaluation of material for relevance to the

project, depth, and possible artifact
application.

• Application into the artifact, through code, or

in evaluation of PCG/ML outputs during
development.

4.2 Ethical and professional principles
The project did not include any participant
testing or data, and did not require any consent
waivers. However, the use of PCG in the project

raises concerns indirectly towards the loss of jobs

2023/24

Kieran De Sousa 19007744

5

as a result of automation. As noted in Andrew
Doull’s “The Death of the Level Designer” (Doull,
2008), PCG continues to make inroads into
traditional level designer roles due to it being

easier to build and deploy for studios, making
these roles potentially “obsolete”. To mitigate
these concerns, the artifact’s scale and focus is
around the usage for small developer teams or
individuals, which would benefit from the
additional time and resources that would be
provided and used elsewhere in development.

To adhere to professional guidelines and
standards, all code implemented from research
and referencing was cited and credited through
code comments, and are acknowledged in the

report through referencing and bibliography

additions. Additionally, all assets sourced
externally are licensed for commercial and
research use, such as CC0 “No Rights Reserved”
(Creative Commons, 2024) licensed material
including Tiny Dungeon (Kenney, 2022).

4.3 Research findings

4.3.1 Why use Procedural Content
Generation in video game development

A critical element of the research phase was the
reason why developers might use PCG in their
game development. Research from sources such
as “Procedural Content Generation in Games”

(Shaker, 2016) highlighted the usefulness of
reducing the need for human designers and
artists, noted as being slower and more
expensive than PCG tool alternatives. Alongside
this, PCG enable completely different and unique
types of games to be developed; games in the

‘Rouge-like’ genre commonly use PCG elements,
as rogue-likes main gameplay loops rely on
randomisation and variability, which PCG
effectively enables.

These findings support the project’s aim to
automate time and cost intensive areas of game

development, and aims of creating unique
gameplay experiences. Due to PCG being more

necessary in rogue-like games, the project’s
scope was limited to PCG in this genre (top-
down, 2D) as opposed to a generalisable PCG
tool.

4.3.2 Why use Machine Learning in video
game development
Research from G. Skinner et al. (2019) suggests
that current implementations of video game AI
leave users dissatisfied, where “bad” AI is easy
to notice whereas “good” AI is expected of a

game. In the application of ML as a tool, it is
potentially “limitless”, and its use case as a user
testing substitute has been explored in research
such as Niklas Kühl et al. (Kühl, N. 2022). Kühl’s
study of pattern recognition in 44 humans

compared to three different machine learning

algorithms suggests that ML might learn slower,
but can reach similar or higher levels of
performance than humans.

These findings support the projects proposition of
ML being a cost-effective substitute for developer
testing of generated content; as after the initial
difficulty of learning, their feedback provided
might be comparable to humans. Considering
this difficulty of initial training based on research,
the input parameters of the ML agents were

reduced in scope, to allow more time for fine-
tuning expected behaviour of agents.

5. Practice
5.1 Artifact scope and delivery

In the initial proposal of the artifact, the project

aimed to create a generalised set of PCG
development tools that could generate multiple
types of PCG, such as both 2D and 3D
environments.

After feedback from tutors and peers over scope,
the artifact development firstly considered the

type of PCG to implement. A 2D, top-down, tile-
based system was chosen due to the following:

• Ease of management: Management and

generation of content in a 2D space is easier
to effectively achieve than in 3D spaces,
which allowed greater time investment in

refining PCG systems.

• Visual clarity: Results of PCG are easier to
visually identify due to camera perspective
showing all elements of PCG, which helps in
debugging and assessment of PCG

effectiveness.

• Suitability in genre: PCG is a common

element in rouge-like games, which often
utilise 2D perspectives, making the artifact
more applicable in professional contexts.

5.2 Development of PCG systems
5.2.1 Evaluating existing Unity systems

To develop the 2D PCG systems, it was essential
to expand Unity’s implementations of Tilemap

and TileBase, which are components of Unity’s

Tilemap system (UTS) package. This package
was chosen to speed up initial development of
the artifact, and proved beneficial as a set of
systems to expand and develop from.

Evident problems in the components of UTS were
quickly identified in development. Unity Tilemap

do not inherently support the ability to identify
which tile in its grid was collided or triggered, as
these collisions/triggers are registered on all tiles
as one shared collider, making it unable achieve
specific method execution such as deleting items
on pickup. Unity TileBase do not possess

features like identifying their type (e.g. if they

2023/24

Kieran De Sousa 19007744

6

are a wall, door, etc.), and their world position
when their owner Tilemap is not known.

5.2.2 Tiles

Figure 1. Tile abstract class inherited by all

custom tile classes.

In response to UTS limitations, the artifact
creates custom Tile class implementations of

TileBase. The Tile class contains data that is

accessed by various systems such as
TriggerTilemap. Each Tile stores its TileBase

asset, its tile type (e.g. floor), references to its
owner tilemap and position data, and the

MLAgent of its simulation. Following object-

oriented programming (OOP) principles of
inheritance, this abstract base class (Figure 1.) is

inherited and expanded in derived classes, such
as TileDoor, to provide functionality to various

systems.

Following compositional design principles, which
complement OOP practices of polymorphism,
interfaces like ICollidable and IInteractable

were implemented to modularise components
that were used in different Tile derived classes.

C# not allowing multiple class inheritance but
allowing multiple interface implementation, along

with C# allowing to query classes if they contain

a specified interface, made interface use effective
in the artifact.

TileInteractable critically implements the

IInteractable interface, enabling derived

classes to override the Interact method. With

polymorphism, the calling of this method would
execute the derived classes implementation of
Interact, such as in ItemCoin, which rewards

the MLAgent stored in its data.

As the project progressed, the necessity for more
expansion of data and methods in Tile became

evident, and new classes and interfaces were
developed as a result.

5.2.3 Tilemap

Tilemap was expanded into two main systems,

management of all tilemaps in a simulation in
TilemapSystem, and the handling of collisions

and trigger events in FloorTilemap,

CollidableTilemap, and TriggerTilemap.

TilemapSystem holds data of the generated room

and tilemaps in a simulation, and critically stores
the list of Tile classes that can be instantiated

by the PCG systems. This was added to provide
flexibility to the user over the appearance and
functionality of PCG generation. This is seen in
Figure 2. below.

Figure 2. Unity Inspector UI of TilemapSystem,

showcasing Tile list for PCG.

To address weaknesses in UTS with identifying
the tile involved in collision/trigger, classes
FloorTilemap, CollidableTilemap, and

TriggerTilemap resolve the tile by identifying

the cell position of the collision and checking the
Tile 2D array for the Tile at this position.

Polymorphism then provides the correct method
execution from the tile identified at the hit
position (Explore, Collide, or Interact).

5.2.4 PCG initial development
After implementation of core functionality
required for the PCG tool, development of PCG

systems and methods was prioritised. Initial
implementation of the two major components,
PCGSystem and PCGMethods was prototyped

alongside Tile and Tilemap system

development. As a result, problems were
identified in both components which led to

eventual refactors.

2023/24

Kieran De Sousa 19007744

7

Notably, PCGSystem contained both user

changeable data (width/height of room), and all
data related to tilemaps; this was problematic, as
the class became bloated with both data and
method handling for PCG. In PCGMethods,

prototype development utilised only UTS, which
the lack of features compared to Tile showed

evidently in PCG results and the development of

PCG methods.

5.2.5 PCG systems and methods
PCGSystem was refactored (PCGSystemRefactor)

to act as an intermediary between the tile and
tilemap data in the TilemapSystem, and PCG

methods that generate content (PCGMethods).

This was done to centralise the user control of
PCG into a single system, with user control over
tiles used in generation being separated to
TilemapSystem. This also made development

more manageable due to the more modular
approach. A struct data container of the

generated room is stored in the PCGSystem,

which is a Tile 2D array. A 2D array was chosen

for its coordinates layout of tiles matching the
grid based tilemap in the artifact.

To give control to users, the PCG generation
method can be specified (e.g. A* Pathfinding),
along with the room sizing; this alongside tile
input control in TilemapSystem gives a

comprehensive set of parameters for generation,
which are passed to PCGMethods.

PCGMethods (PCGMethodsRefactor) continued a

similar approach to its previous iteration in
separating generation logic into distinct and
reusable methods, however, it now utilised
custom Tile classes. Instantiation of various

Tile derived classes are provided in methods

and used for all PCG generation methods in the
class. On a method call for generation (e.g.

AStarPathFindingGeneration), room data and

tilemap data are passed to the system, along
with an optional offset and seed for shifting tile
positions and random number generation (RNG)

respectively. In methods such as
AStarPathFindingGeneration, walls and doors

are the first tiles generated and added to the
Tile 2D array to ensure that PCG confines to the

rules of a room layout, of four doors in the centre
position of each room wall, and walls as the
outermost tiles in a grid.

The generated room is returned as a RoomData

struct, with the appearance on the tilemaps

being updated on RenderRoom method call; this

was modularised to make room rendering be
independent from the type of generation used.

5.2.6 Methods of PCG

PCGMethods access different methods of PCG,

which are modularised to different classes to
keep the codebase organised. AStarPathfinding

is the most functional algorithm method for PCG
developed, and was prioritised under
consideration of the artifact’s timescale.
Implementation of this method would be faster
due to greater number of resources to reference,
along with flexibility to different sized grids.

After being passed the current Tile 2D array,

along with a list of door positions,
AStarPathfinding ensures a valid path (non-

collidable and non-trigger tiles) is created for
each door to reach another door. This is done
through node representation, where each point in
the Tile 2D array is represented as a node

storing its position, the sum of GCost (movement
cost from start node) and HCost (Heuristic cost
to the end node), and the nodes parent node.
After node evaluation and neighbour exploration,

a path is traced, and after all paths have been
traced for each door, a list returning the path
grid positions is passed to PCGMethods.

With the generated list, TileFloor tiles are

generated at the path positions to ensure a valid

(completable) room. For the rest of the grid,
RNG, which might be weighted by a trained ML
agent passing EngagementMetrics, determines

the rest of the tiles generated for the room.

5.3 Development of ML systems
5.3.1 Implementation of Unity ML-Agents
The next stage of the artifact’s development
focused on ML. After research into possible
implementation options, Unity ML-Agents proved
most suitable for the artifact. This was due to
easy incorporation into the project due to its

plugin integration, and the pre-built frameworks
for machine learning models, which sped up
development significantly compared to alterative

options such as bespoke.

After successful isolated testing of movement

code, this code was transferred to the developing
MLAgent system, in its Heuristic method

inherited from ML-Agents Agent. Initial

development used a heuristic behaviour type for
the ML agent, which provided the valuable ability
to control the agent with the keyboard during
testing before ML had its implementation.

5.3.2 ML agent

2023/24

Kieran De Sousa 19007744

8

Figure 3. MLAgent prefab with 2D ray

perception sensors, and multiple colliders.

Figure 3. illustrates the decision to include two
colliders on the MLAgent prefab, the larger being

used for physical collisions, and the smaller

trigger collider for trigger collider detection. This
was implemented in response to problems with
registering trigger collisions in the
TriggerCollider system, which would identify

the wrong tile being triggered in its grid. This
change made tile identification more accurate.

2D ray perception sensors were attached to the

MLAgent, which covered 360 degrees of vision for

the agent. These raycast sensors detect and

mark hits on the tagged objects relevant to the
agent, including obstacles, items, and doors.
During development, problems with sensor
Layermasks were identified, where raycasts

would mark hits with the agent they were
attached to. This was resolved by creating a new
Layermask for the agent prefab that was not

marked as a hittable layer.

Observations in an agent’s environment are

collected by these 2D sensors, along with
observations added in CollectObservations.

Critical information is added as observations

which are eventually passed to
OnActionRecieved for decision of actions. This

information includes the agent’s current local
position, the agent’s position on the tilemap, the
distances between the agent and the nearest
item/door/obstacle (tiles), and the tile position of

those nearest tiles. These observations provide a
wide-ranging list of data sources for the agent’s
neural network to use in decision-making.

The OnActionReceived method determines what

action the agent should take based on
observations taken of its environment. To speed
up development and fine-tuning of ML, the
actions available to the player (agent) was

scoped to focus on movement. Actions such as
combat were beyond the timescale of the project

due to increased complexity of reward structures,
and higher difficulty in achieving expected
behaviours for trained agents.

EngagementMetrics of a currently playing room

are stored in the form of a data struct owned by
an MLAgent, which tracks overall engagement

through adding exploration float data (floor tiles

the agent moved in) and number of items
picked-up data. This data is passed to the
PCGSystem when an MLAgent is assigned to use a

trained brain model for behaviour.

5.3.3 Training and re-training
With numerous ML methods available in ML-
Agents, the artifact chose reinforcement learning

as the method for training agents. This was due
to the process of RL agents trying to maximise
rewards being like how a player might try reward
themselves in gameplay. Reward structures of an
agent (e.g. item pickup) matched meaningful
gameplay interactions that would be expected of
a level, and these were passed on from the agent

in the form of EngagementMetrics to PCG

systems for altering of generation results.

Figure 4. PCG – Training Environment

training eight agents simultaneously.

Eight Simulation prefabs were run

simultaneously during the training of agents,
reducing the time taken to train agents, as seen
in Figure 4. Each Simulation ran independently,

with agent episodes ending with through an
agent reaching its maximum time step of 5000
steps (actions), or through successful completion
of a room through the triggering of a TileDoor.

Allowing the completion of a room ensured
agents would have a consistent end-state

decision for their actions. Training sessions would

2023/24

Kieran De Sousa 19007744

9

be ended upon average reward results remaining
stable and levelled off, as further gains from
training would be negligible.

5.3.4 Engagement results
The final element to implement of the artifact
was incorporating EngagementMetrics into PCG.

This required trained ML agents, as they
substitute for human-testing in PCG results.
EngagementMetrics influence the generation of

rooms, acting as a “weighting” for random
generation elements; for instance, a room will be
more likely to generate more items if item pick-
up engagement was low.

When a new room is to be generated in

PCGSystems, a comparison is made to the

previous rooms engagement result to the current
highest engagement room generated. If the
previous room generated higher engagement
from an agent, the room’s layout (Simulation)

is saved to a prefab in Unity’s asset folder. This
room can then be imported into a Unity scene for

playtesting.

5.4 Management of systems
To create consistent templates that manage the
core systems of the artifact, a Simulation script

and prefab was created, acting as an overall
manager that can be dropped into any Unity
scene. A Simulation prefab instance holds

references to the three major systems of
MLSystem, PCGSystem, and TilemapSystem.

Simulations can be reset upon two conditions, a

player/agent completes a level by triggering a
door, or if during agent training, the agent’s
episode begins (once every 5000 steps).
“Engaging” rooms are generated and saved as a
Simulation.

5.5 Project management, documentation,
code

Figure 5. View from JetBrains Rider showing the
integration of XML code comments and IDE.

In the development of the artifact, professional
software development practices were employed
to ensure efficient iterative development.

Practices like clear and extensive documentation
that integrates with integrated developer
environments (IDE’s), use of version control,
atomic commits, full usage of GitHub project
management tools like GitHub Issues and
Projects, and adherence to C# standard style
guides, ensured effective project development.

To maintain high consistency in code quality and
readability, adherence to C# coding conventions
like PascalCase for method/function signatures
(e.g. MyFunction), and camelCase for member

variables (e.g. healthRemaining) was

maintained. These conventions ensured readable
code for external readers familiar with C#. Code
commenting was extensive, with integration with

IDE’s through tagging for methods, functions,
and classes. Figure 5. provides an example of
code commenting integration with JetBrains
Rider (JetBrains, 2024).

Git (Linus Torvalds, 2005) was chosen for the
version control system as its detailed history

tracking and branching features provided
necessary rollbacks in case of project
development issues. Atomic commits
(Hovhannisyan, 2021) were utilised for

committing practices, as imperative language
and small self-contained commits make tracking
changes and issues easier to identify. Git was

also chosen due to its use by GitHub, the chosen
code repository hosting provider.

GitHub provides useful project management tools
that were employed during development, like
GitHub Issues, a tracker for bugs,

enhancements, and other requests. GitHub
Projects displays data related to Issues in
common views, such as kanban style boards,
Project Roadmaps, and GitHub tables, which
made project tracking easier.

Figure 6. View from GitKraken of artifact commit

history, showing the “Closing” feature.

2023/24

Kieran De Sousa 19007744

10

GitHub Issues seamlessly integrates with
GitKraken (GitKraken, 2015), the Git GUI client
chosen for the project, through displaying
currently opened issues, and the ability to

reference and close issues directly through Git
commit messages, allowing for effective tracking
of tasks. Figure 6. illustrates the view of the
artefact’s repository from GitKraken’s user-
interface (UI).

6. Discussion of outcomes

To accurately conclude the outcomes of the
artifact, the discussion will focus on the three
project objectives and assess their level of
achievement. The artifact aimed to deliver a PCG
tool that generates “functional” (Summerville,

2018) levels that are completable, trained ML

agents that replicate player behaviour in the
level environment, and a system for improving
PCG generated based on trained agent data.

6.1 Evaluation of PCG
6.1.1 PCG tool
In analysis of PCG results, the first element is

usability and extendibility of the PCG tool. High
levels of modularisation of code and in-depth
documentation enhances the practical
applicability of the artifact as a development tool
to be imported into game development projects.
Unity features such as prefabs make for easier
importing of simulations in game scenes, and

Unity Header and Tooltip provide clarity to not

immediately obvious elements of the Unity
Inspector, which were effective in development
as a form of documentation.

Developers are provided with an accessible code
base that would be easy to expand with further
PCG implementations and possible automation of
ML testing with unit tests. Unit testing is the
process of testing individual parts of a software,
often autonomously, to ensure they meet test
case expectations (GeeksForGeeks, 2024).

6.1.2 PCG results
Withington (2024) conducted a survey on the
most common metrics and features used in the
assessment of PCG levels. For the purposes of

the evaluation, the relevant metrics that will be

used in PCG result assessment are:

• Level Fitness – Single numerical figure to

quantify the quality of the level. Factors of
consideration are the diversity of items,
placement of obstacles, and exploration
opportunities in the form of empty tiles.

Numerical figures 1 – 10.

• Solvability & Win Rate – A binary flag if the
level can be completed or not. Pass or fail.

For the evaluation of ML in PCG, the engagement
score was also noted. However, this not be used

in the evaluation of the PCG results.

Level
Level

Fitness
Solvability
& Win Rate

Engagement
Score

Fitness vs.
Engagement

Variance

6 Pass 2 (1.18) -4.82

7 Pass 5.5 (3.24) -3.76

4 Pass 10 (5.88) 1.88

2023/24

Kieran De Sousa 19007744

11

Table 1. Comparison of generated room layouts under Withington’s (2024) common PCG assessment
metrics.

The results from Table 1. above highlight the
success in the implemented PCG methods for
generating a full, completable, level with
expected interactable elements and obstacles
present. All levels generated ensure a pathway to
doors for level completion, and this element of

PCG objectives was successful. However,
limitations can be seen in some generations, for
instance, the “cluttered” appearance of
engagement score rooms 10 and 12, with some
items being inaccessible to a player. Breakable

obstacles, which was out of scope for the
development of the artifact, would have

mitigated this issue in generation.

It is worth note, that Withington (2024) themself
acknowledge that this data cannot be the sole
identifier of the quality of individual generations,
and that quantitative evaluation might need a
new framework entirely.

6.2 Evaluation of ML
6.2.1 ML agent behaviour
Evaluation of the behaviour of agents during
training is crucial to the measurement of success
of the artifact. The first successful training
session, session 2 (orange) took 1.82 million

steps (actions) to achieve desired agent
behaviour. During their training, agents were

able to identify the flaws of the A* pathfinding
generation algorithm. As RL encourages agents
to maximise their rewards per episode, agents
quickly realised (around 750,000 steps) that a
valid path to a highly rewarding door would
always be present, and directly in sight of their

2D ray perception sensors. They quickly adopted
the behaviour of getting to a level door as
quickly as possible, possibly collecting items if
nearby on their route. The risk of hitting an
obstacle and receiving a negative reward was too

great.

To counteract this, new implementations of
sessions 5 (pink) and 7 (green) were made that
applied exploration rewards for an agent, along
with tweaking of reward values for hitting
obstacles and picking up items. Observation of
their training, along with data from Graph 1.,
suggested that the previous sessions issue had

been mitigated, with agents exploring rooms far
more to achieve exploration rewards. However, a
new issue was presented, as agents neglected to
complete levels by going to a door. Slight trends
upwards beyond the 500,000 step range were
due to agents being more effective at exploring
and picking up items, and was not due to

completing levels through door exit.

3 Pass 12 (7.06) 4.06

8 Pass 17 (10) 2

Graph 1. Agent rewards in training for steps taken. X axis: Number of steps (actions). Y axis: Reward.
Training session 2 (orange), training session 5 (pink), training session 7 (green)

2023/24

Kieran De Sousa 19007744

12

The tweaking of hyperparameters, like
curiosity, or editing of reward structures, such

as gradual rewards for getting closer to a door,
could have helped alleviate the issues presented
in sessions 5 and 7.

6.2.2 ML training outcomes
In analysis of the effectiveness of ML training and
the resulting outputs of the trained agents, visual
observation of their behaviour and data on their
average rewards was used for evaluation.

As Graph 1. presents, it is evident that training
RL agents quickly identify environmental features
that positively/negatively reward themselves.
The training sessions all shared significantly

sharp increases in rewards during the early
training steps, during the 0–500,000 steps
range. Initially, agents would end episodes with

more negative rewards than positive, due to
colliding with obstacles often, which was
confirmed in visual observation of agents during
their training. However, these negative rewards
quickly identified to agents the necessity to avoid
collision with obstacles, and their behaviour

adjusted accordingly. This met an expected
outcome for their end behaviour, which is
obstacle avoidance.

From the 0-500,000 step range onwards, training
sessions saw fluctuation in rewards, most evident

in training sessions 5 (pink) and 7 (green). Visual

observation in training identified agent’s difficulty
in being able to observe its whole environment.
2D ray perception sensors would hit the first
valid object it encountered, meaning important
information such as items behind obstacles tiles
would not be known to an agent. Whilst this was
considered, and mitigation attempted through

the agent tracking its nearest door/item/obstacle
position, an observation of the whole
environment (e.g. the tilemap grid itself, with
each Tile position observed) would have led to

more effective agent training and behaviour.

From the results, weaknesses of RL were

identifiable. The most notable being the extended

periods of time required to get expected agent
behaviour, as this often requires minor changes
to code which would take time to reflect during a
new training. In a professional context, this time
intensive set-up would need to be evaluated, as
the time taken to fine-tune agent behaviour
might exceed the time saved from not requiring

human testing of PCG results.

6.3 ML in PCG evaluation
To evaluate the effectiveness of ML in influencing
PCG outputs to create more engaging levels, the
outputs of engaging levels were saved as prefabs

for comparative visual and layout analysis. This
was done under the same framework as PCG

results evaluation, based on Withington (2024).

The highest recorded engagement score by an
agent was 17, whereas the highest-level fitness
score can be a 10. In consideration of this,
variance scores were calculated under the

treatment of an engagement score of 17 being
the fitness equivalent of a 10.

(
𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 (17)
 × 10)

Using Table 1. for evaluation, human

engagement metrics fluctuated between high and
low variance compared to agent assessment.
Notably, rooms with higher human engagement
scores followed layout trends of larger, open-
spaces with all items being fully accessible to a
player. These preferred rooms would often have

higher levels of variance, as the samples from
Table 1. highlight.

In contrast, upon visual observation of agent
behaviour and influence on PCG generation,
higher engagement rooms shared common
elements of higher item density rooms, and

items not obscured by obstacles. In rooms where
the agent was unable to pickup items obscured
by obstacles, item generation will increase
greatly for the next room generated, which would
lead to less obstacles to hinder engagement.

The results evidently show the difficulty in

quantifying engagement metrics to a
programmable metric of assessment.

“Engagement” is inherently a subjective, human
concept. Whilst agents might prioritise rewards
based on their predefined reward structures, this
does not fully translate to human engagement. A

broader range of engagement metrics could have
been provided to establish a better
understanding of what makes a level engaging,
for example, exploration variety in the form of
branching paths to the same end point.

In hindsight, elements of human testing of ML-

influenced PCG levels would have flagged the
validity of the results the agent was providing for
engagement. If results were inaccurate to what a
human might deem engaging (such as the

variance score in Table 1.), the ML system could
be updated accordingly. Additionally, the feeding
of “engaging” and “non-engaging” level data to

the ML system (as Withington’s (2024) metric of
“similarity to Training Data” describes) would
have helped to establish the accuracy between
EngagementMetrics and user-perceived

engagement.

7. Conclusion and recommendations

The project aimed to investigate the application
of ML in the evaluation of PCG outputs. The
findings and results presented showed the
challenges of creating “functional” game content

with PCG, and highlighted the necessity for more
advanced PCG methods such as WFC to generate

2023/24

Kieran De Sousa 19007744

13

this content. The ability to accurately quantify
engagement as a programmable metric was a
limitation as the findings show, as engagement
leans towards subjectivity. Despite this, the

findings highlight the strengths of algorithms like
A* pathfinding in ensuring completable levels,
along with the strengths of ML in being able to
learn in its environment from observations and
reward structures, and alter its behaviour
accordingly.

The next logical steps for the project would
involve implementation of more advanced PCG
generation methods such as Wave Function
Collapse and Cellular Automata. The core
functionality developed in the current artifact

would provide an effective base for these

methods. Development of WFC and CA would
enhance the number of PCG options to a user,
and provide more sophisticated room layouts.
These PCG methods would also allow for
comparative analysis of PCG results to identify
the effectiveness of methods in different
scenarios (e.g. Rooms that are more challenging,

rooms that are less rewarding, etc.).

As surmised from Summerville (2018), as the
importance of PCG increases in game
development, so too does the necessity for
higher quality PCG results, with or without
human involvement. With ML still being a

relatively new paradigm for exploration in
incorporation for PCG, the impact of this project
would be most applicable as a continued
research survey in an academic journal.

After further research and development, either

through academic journals or open sourcing the
code under a CC0 license, the project’s
commercial potential is high. Rough-like games
would see the most benefit from greater
engagement and randomness in their content
delivery, whilst other game genres might see
applicability in the PCG or ML implementations,

and incorporate it into their own code.

The project successfully demonstrated the
incorporation of machine learning into the
evaluation of output results of procedural content
generation, and highlights machine learning’s
strengths in autonomous replication of human

behaviour. The project is viable for open-
sourcing, so that users can continue
development of the PCG and ML systems
present, either for research or commercial
purposes.

8. References
A.I. Design (1980) Rogue. [Video game]. Epyx.
Available from:
https://store.steampowered.com/app/1443430/R

ogue/ [Accessed 04 July 2024].

Adams, C. and Louis, S. (2017) Procedural maze
level generation with evolutionary cellular
automata. 2017 IEEE Symposium Series on

Computational Intelligence (SSCI). Honolulu,
2017. pp. 1-8. [Accessed 04 July 2024].

Bay 12 Games (2006) Dwarf Fortress. [Video
game]. Bay 12 Games. Available from:
https://www.bay12games.com/dwarves/
[Accessed 03 July 2024].

Creative Commons (2024) CC0. Available from:
https://creativecommons.org/public-domain/cc0/
[Accessed 01 July 2024].
Creature Labs (1996) Creatures. [Video game].

Warner Interactive Europe. [Accessed 06 July

2024].

Dodge Roll. (2017) Enter the Gungeon. [Video
game]. Devolver Digital. Available from:
https://store.steampowered.com/app/311690/En
ter_the_Gungeon/ [Accessed 21 April 2024].

Doull, A. (2008) The Death of the Level
Designer: Procedural Content Generation in
Games – Part One. Ascii Dreams [blog]. 14
January. Available from:
https://roguelikedeveloper.blogspot.com/2008/0
1/death-of-level-designer-procedural.html
[Accessed 04 July 2024].

Edmund McMillen, EM. (2011) The Binding of
Isaac. [Video game]. Available from:
https://store.steampowered.com/app/113200/Th
e_Binding_of_Isaac/ [Accessed 21 April 2024].

Esaki, C. (2023) Forza Motorsport’s New AI and
Physics Make Every Race Competitive. Available
from: https://forza.net/news/forza-motorsport-
drivatars-tire-physics [Accessed 03 July 2024].

GeeksforGeeks (2024) Unit Testing – Software
Testing. Available from:

https://www.geeksforgeeks.org/unit-testing-
software-testing/ [Accessed 16 July 2024].

GitHub (2024) GitHub. Available from:
https://github.com/ [Accessed 10 July 2024].

GitKraken (2015) GitKraken (10.0.0) [computer

program]. Available from:
https://www.gitkraken.com/ [Accessed 10 July
2024].

Gumin, M. (2016) WaveFunctionCollapse (1.00)
[computer program]. Available from:

https://github.com/mxgmn/WaveFunctionCollaps
e [Accessed 06 July 2024].

Hovhannisyan, A. (2021) Make Atomic Git
Commits. Aleksandr Hovhannisyan Blog [blog].

15 May 2021. Available from:

https://store.steampowered.com/app/1443430/Rogue/
https://store.steampowered.com/app/1443430/Rogue/
https://www.bay12games.com/dwarves/
https://creativecommons.org/public-domain/cc0/
https://store.steampowered.com/app/311690/Enter_the_Gungeon/
https://store.steampowered.com/app/311690/Enter_the_Gungeon/
https://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html
https://roguelikedeveloper.blogspot.com/2008/01/death-of-level-designer-procedural.html
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/
https://forza.net/news/forza-motorsport-drivatars-tire-physics
https://forza.net/news/forza-motorsport-drivatars-tire-physics
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://www.geeksforgeeks.org/unit-testing-software-testing/
https://github.com/
https://www.gitkraken.com/
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/mxgmn/WaveFunctionCollapse

2023/24

Kieran De Sousa 19007744

14

https://www.aleksandrhovhannisyan.com/blog/at
omic-git-commits/ [Accessed 10 July 2024].

Immersive Limit LLC (2020) ML-Agents:

Hummingbirds. Available from:
https://learn.unity.com/course/ml-agents-
hummingbirds?uv=2019.3 [Accessed 18 March
2024].

JetBrains (2024) Rider (2024.1) [computer
program]. Available from:

https://www.jetbrains.com/rider/ [Accessed 10
July 2024].

Kaelbling, L. and Littman, M. (1996)
Reinforcement Learning: A Survey. Journal of

Artificial Intelligence Research [online]. 4.

[Accessed 04 July 2024].

Kazemi, D. Spelunky Generator Lessons.
Available from:
https://tinysubversions.com/spelunkyGen/
[Accessed 04 July 2024].

Kenney (2022) Tiny Dungeon. Available from:
https://kenney.nl/assets/tiny-dungeon [Accessed
01 July 2024].

Kühl, N. (2022) Human vs. supervised machine
learning: Who learns patterns faster?. Cognitive
Systems Research [online]. 76, pp. 76-92.

[Accessed 04 July 2024].

Linus Torvalds (2005) Git (2.45.2) [computer
program]. Available from: https://git-scm.com/
[Accessed 10 July 2024].

Mojang Studios (2011) Minecraft. [Video game].
Mojang Studios. Available from:
https://www.minecraft.net/en-us [Accessed 03
July 2024].

Mossmouth. (2008) Spelunky. [Video game].
Mossmouth. Available from:

https://store.steampowered.com/app/239350/Sp
elunky/ [Accessed 23 April 2024].

Plausible Content (2018) Bad North. [Video
game]. Raw Fury. Available from:
https://www.badnorth.com/ [Accessed 06 July
2024].

Procedural Content Generation Wiki (2016)
Rogue. Available from:
http://pcg.wikidot.com/pcg-games:rogue
[Accessed 04 July 2024].

Shaker, N. and Togelius, J. (2016) Procedural
Content Generation in Games [online]. Springer
Cham. [Accessed 02 July 2024].

Skinner, G. and Walmsley, T. (2019) Artificial

Intelligence and Deep Learning in Video Games A

Brief Review. 2019 IEEE 4th International
Conference on Computer and Communication
Systems (ICCCS). Singapore, 2019. pp. 404-408.
[Accessed 04 July 2024].

Summerville, A. and Snodgradd, S. (2018)
Procedural Content Generation via Machine
Learning (PCGML). IEEE Transactions on Games
[online]. 10(3), pp. 257-270. [Accessed 02 July
2024].

Turn 10 Studios (2017) Forza Motorsport 7.
Standard Edition. [Video game]. Microsoft
Studios. Available from:
https://www.xbox.com/en-
GB/games/store/forza-motorsport-7-standard-

edition/9n3nk5ww05ht [Accessed 06 July 2024].

Unity Technologies (2004) Unity Machine
Learning Agents (Version 3.0.0) [computer
program plugin]. Available from:
https://unity.com/products/machine-learning-
agents [Accessed 18 March 2024].

Unity Technologies (2005) Unity (2022.3.6f1)
[Computer program]. Available from:
https://unity.com/ [Accessed 23 April 2024].

Unity Technologies (2005) Unity (2022.3.6f1)
[Computer program]. Available from:
https://unity.com/ [Accessed 3 March 2024].

Unity Technologies (2017) Unity Machine
Learning Agents [Computer program]. Available
from: https://unity.com/products/machine-
learning-agents [Accessed 3 March 2024].

Withington, O. and Cook, M. (2024) On the
Evaluation of Procedural Level Generation
Systems. Proceedings of the 19th International
Conference on the Foundations of Digital Games.
pp. 1-10. [Accessed 16 July 2024].

9. Bibliography

BUas Games (2018). EPC2018 – Oskar Stalberg
– Wave Function Collapse in Bad North. YouTube

[video]. 11 July. Available from:
https://youtu.be/0bcZb-
SsnrA?si=iy6Y0E3KNcGJGvx2 [Accessed 04 July
2024].

Gamma, E. and Helm, R. (1995) Design
Patterns: Elements of Reusable Object-Oriented
Software [online]. Addison-Wesley Professional.
[Accessed 02 February 2024].

Kim, H. and Lee, S. (2019) Automatic Generation

of Game Content using a Graph-based Wave
Function Collapse Algorithm. 2019 IEEE
Conference on Games (CoG). London, 2019. pp.
1-4. [Accessed 04 July 2024].

https://www.aleksandrhovhannisyan.com/blog/atomic-git-commits/
https://www.aleksandrhovhannisyan.com/blog/atomic-git-commits/
https://learn.unity.com/course/ml-agents-hummingbirds?uv=2019.3
https://learn.unity.com/course/ml-agents-hummingbirds?uv=2019.3
https://www.jetbrains.com/rider/
https://tinysubversions.com/spelunkyGen/
https://kenney.nl/assets/tiny-dungeon
https://git-scm.com/
https://www.minecraft.net/en-us
https://store.steampowered.com/app/239350/Spelunky/
https://store.steampowered.com/app/239350/Spelunky/
https://www.badnorth.com/
http://pcg.wikidot.com/pcg-games:rogue
https://www.xbox.com/en-GB/games/store/forza-motorsport-7-standard-edition/9n3nk5ww05ht
https://www.xbox.com/en-GB/games/store/forza-motorsport-7-standard-edition/9n3nk5ww05ht
https://www.xbox.com/en-GB/games/store/forza-motorsport-7-standard-edition/9n3nk5ww05ht
https://unity.com/products/machine-learning-agents
https://unity.com/products/machine-learning-agents
https://unity.com/
https://unity.com/
https://unity.com/products/machine-learning-agents
https://unity.com/products/machine-learning-agents
https://youtu.be/0bcZb-SsnrA?si=iy6Y0E3KNcGJGvx2
https://youtu.be/0bcZb-SsnrA?si=iy6Y0E3KNcGJGvx2

2023/24

Kieran De Sousa 19007744

15

PavCreations (2020) Tilemap-based A* algorithm
implementation in Unity game. Available from:
https://pavcreations.com/tilemap-based-a-star-
algorithm-implementation-in-unity-game/#how-

a-star-algorithm-works-the-basics [Accessed 12
July 2024].

Procedural Content Generation Wiki (2017)
Dungeon Generation. Available from:
http://pcg.wikidot.com/pcg-algorithm:dungeon-
generation [Accessed 04 July 2024].

Shao, K. and Tang, Z. (2019) A Survey of Deep
Reinforcement Learning in Video Games. ArXiv
[online]. Available from:
https://arxiv.org/abs/1912.10944 [Accessed 04

July 2024].

Unity (2020). Kart Racing Game with Machine
Learning in Unity! (Tutorial). YouTube [video]. 11
January. Available from:
https://www.youtube.com/watch?v=i0Vt7l3XrIU

[Accessed 18 March 2024].

Zucconi, A. (2022) Minecraft Biome Generation
Explained Using Stochastic Cellular Automata.
Available from:
https://www.reddit.com/r/cellular_automata/com
ments/v36xjp/minecraft_biome_generation_expl

ained_using/ [Accessed 04 July 2024].

Zucconi, A. (2020) The AI of Creatures. Available
from:
https://www.alanzucconi.com/2020/07/27/the-

ai-of-creatures/ [Accessed 06 July 2024].

Appendix A: Project Log

Date of entry Task Summary
Additional
Comments

11/01/2024 1. Add ML agents
Added ML-Agents package to
project. Set up Anaconda
environments for future training.

24/01/2024

1. Player Movement

2. PCG Perlin Noise

generation method

Player movement added to play
game scenes.

To test Unity Tilemap System
(UTS), perlin noise generation
method added. Planned to be
scrapped for random (but
completable level) algorithm first.

26/03/2024

1. Tile Custom Classes in
PCG Methods

2. Door checking in PCG

Development of custom Tile

classes that extend functionality of
UTS. Abstract so its not accidently
instantiated by itself.

Added checks for door locations to
fix issue.

28/03/2024

1. Meeting with Supervisor

2. Custom Tile work
continued.

Showed current state of the
artifact. Very much behind
development and personal goals

for the project due to personal
circumstances. Current code is
well written and implemented, but

needs far more done. Requested
helping writing for additional time.

Added items and inventory
systems, and development of
interactable tile elements.

Help with email to
Tom.

Recommendation to
start writing report
now.

Take research from
user testing as
deliberately limiting
the number of
variables.

24/05/2024
1. Action plan regarding

deadline.

Personal circumstances and high
workloads in other modules set
back progress in the artifacts
development. Established plan of
tasks to complete before July.

12/04/2024
meeting had to be
cancelled with
supervisor due to
doctors
appointment.

10/06/2024 1. Dissertation Report
Project development continued
after burn-out break. Report

https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
http://pcg.wikidot.com/pcg-algorithm:dungeon-generation
http://pcg.wikidot.com/pcg-algorithm:dungeon-generation
https://arxiv.org/abs/1912.10944
https://www.youtube.com/watch?v=i0Vt7l3XrIU
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.alanzucconi.com/2020/07/27/the-ai-of-creatures/
https://www.alanzucconi.com/2020/07/27/the-ai-of-creatures/

2023/24

Kieran De Sousa 19007744

16

writing for introduction and
research methods. Began collating
references in separate document.

26/06/2024 1. Entity tiles
Entity tiles (items) work
completed. Utilise interfaces to
allow for multiple inheritenance.

29/06/2024

1. Refactors of various
systems

2. ML agent behaviour

tested.

PCGSystems, PCGMethods, and

tilemap systems fully refactored.
Previous implementations now
deprecated.

Tested ML agent behaviour in
controlling the player. More of the
systems surrounding need

development before work can be
focused on ML.

01/07/2024 1. Dissertation Report
Report writing continued. Collated
references for literature review to
begin writing section.

04/07/2024 1. Dissertation Report
Literature review complete, and
non-practice and conclusion
sections.

09/07/2024
1. Trigger tilemap for

interactions
Dissertation report writing
continued to this date.

12/07/2024

1. Collision detection fixes

2. Fix critical bugs

Fixed issues in collision detection
with trigger items, as coordinates
would not be accurate to the
collision position translated in cell
position.

Fixed critical bugs were scripts

were being directly modified, and
these modifications would be
passed permanently to other
prefabs and objects.

14/07/2024
1. ML Agent Training

successfully complete

Trained ML agent output achieved.
Will walk to doors to complete
levels, avoid obstacles, and pickup
items. Twitchy behaviour and too
focused on beating levels.

17/07/2024

1. Engagement metrics

2. Reward structure

tweaks

Added engagement metrics that

assess played level. Used to
weight generation of next room.
Current metrics of items picked up
and exploration.

Rewarding mechanisms tweaked

for agent to optimise behaviour.
Rewarded for exploration.

18/07/2024
1. Dissertation report

2. Artifact final tweaks

Dissertation conclusion and notes
complete.

Added final code comments, and

saving for high engagement
rooms.

19/07/2024
1. Dissertation report

2. Artifact final tweaks

Dissertation transferred from note
layout to required format.

Final small bug fixes and project
cleanup. Bug found with
weightings, and fixed.

2023/24

Kieran De Sousa 19007744

17

Title Number Status Assignees Labels Author CreatedAt ClosedAt Type State
Create Tilemap System 1 Done Kieran De Sousa feature Kieran De Sousa 28/03/2024 13:35 27/06/2024 23:25 ISSUE CLOSED
Create Trigger Collider Tilemap Script 10 Done Kieran De Sousa feature Kieran De Sousa 30/06/2024 13:02 09/07/2024 23:44 ISSUE CLOSED
Add observations, OnEpisodeBegin TO MLAgent 11 Done Kieran De Sousa feature Kieran De Sousa 12/07/2024 14:48 14/07/2024 20:01 ISSUE CLOSED
Make system base class 12 Done Kieran De Sousa feature Kieran De Sousa 12/07/2024 15:10 12/07/2024 18:47 ISSUE CLOSED
Tweak A* Generation 13 Done Kieran De Sousa feature Kieran De Sousa 13/07/2024 22:05 18/07/2024 14:07 ISSUE CLOSED
Finish reward functionality 14 Done Kieran De Sousa feature Kieran De Sousa 14/07/2024 20:01 17/07/2024 22:29 ISSUE CLOSED
Fix Tile 2D array not being passed to children 15 Done Kieran De Sousa bug Kieran De Sousa 18/07/2024 11:01 19/07/2024 16:50 ISSUE CLOSED
Add final code comments 16 Done Kieran De Sousa documentation Kieran De Sousa 18/07/2024 15:39 18/07/2024 17:59 ISSUE CLOSED
Add Bootstrapper 2 Done Kieran De Sousa feature Kieran De Sousa 28/03/2024 13:41 28/03/2024 22:26 ISSUE CLOSED
Complete Entity Systems 3 Done Kieran De Sousa feature Kieran De Sousa 25/06/2024 21:21 26/06/2024 17:54 ISSUE CLOSED
Merge Inventory & Movement System --> ML Agents 4 Done Kieran De Sousa feature Kieran De Sousa 25/06/2024 21:23 30/06/2024 13:03 ISSUE CLOSED
Add Centre Position, and Door Locations as public variables 5 Done Kieran De Sousa feature Kieran De Sousa 26/06/2024 18:48 27/06/2024 23:24 ISSUE CLOSED
Complete Generate Doors and Generate Walls methods 6 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:26 29/06/2024 19:44 ISSUE CLOSED
Swap to Tile Map Implementation in PCG Methods Refactor 7 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:27 12/07/2024 14:44 ISSUE CLOSED
Implement A* Pathfinding Method 8 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:29 13/07/2024 21:22 ISSUE CLOSED
Add Code Comments to current work 9 Done Kieran De Sousa documentation Kieran De Sousa 29/06/2024 19:45 30/06/2024 13:49 ISSUE CLOSED

Appendix B: Project Timeline

Appendix C: Assets used in the Project
Tile assets: Kenney (2022) Tiny Dungeon. Available from: https://kenney.nl/assets/tiny-dungeon - CC0
license.

Tile assets: Edmund McMillen, EM. (2011) The Binding of Isaac. Available from:
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/ - CC BY-NC-SA 3.0 license (from

The Binding of Isaac Rebirth Wiki).

https://kenney.nl/assets/tiny-dungeon
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/

