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Abstract  

Procedural content generation (PCG) is a technique used in video game development to algorithmically 

create content, and is often used for visual creation. Machine learning (ML) is being explored as a 
substitute for human testing.  

The project explores and evaluates the creation of functional game content with PCG, the training of ML 
agents in this content, and the evaluation of generated content for engagement through trained ML 
agents. The project concludes by discussing the strengths and weaknesses of the implementations of PCG 
and ML, and the effectiveness of engagement data in influencing new PCG outputs. 
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The project viva video can be accessed at: https://youtu.be/ntM_Sgg6gpA?si=Zh6yP5F_6sixF7Ka   
 

 

1. Introduction 
In the context of video game development, 
procedural content generation (PCG) is often 

associated with asset creation, such as 
environments, or non-player characters. Video 
games like The Binding of Isaac (McMillen, 2011) 
and Enter the Gungeon (Devolver Digital, 2017) 
utilise procedural generation to create gameplay 
variation, by connecting individual rooms created 
by a level designer to create a level. This project 

aims to explore the integration of Machine 

Learning (ML) in PCG to enhance quality and 
engagement in PCG outputs; these outputs being 
individual room levels of a top-down, 2D video 
game created in Unity (Unity Technologies, 
2022). 
 

Using PCG to create levels runs into problems for 
developers, such as resources and time being 
required to test outputs, and manual editing of 
PCG methods based on the results of this testing. 
Using ML, ML agent feedback could be used as a 
substitute for user testing to improve PCG 

outputs. The importance of investigating ML in 
PCG lies in its potential to automate gameplay 
level creation and assessment, saving developers 
time and resources which can be allocated 

elsewhere in the video game deliverable. The 
project explores beyond the typical use of 
generating environments for appearance, and 

investigates content generation focused on 
gameplay quality. 
 
The project seeks to answer whether ML can 
effectively assess generated levels for quality 
(engagement), with its inspiration stemming 
from the potential streamlining of development 

for both small-scale and large-scale game 
studios. The potential benefits of PCG efficiency, 
gameplay quality, and development cost 
efficiency, through ML are key motivators for 
exploring its use in video game development. 

 

1.1 Project objectives 
 

• Develop a PCG tool that creates 
interactive level rooms in Unity. 

 
• Develop and train a ML agent that 

replicates typical player behaviour. 

 
• Develop a system for improving PCG 

outputs based on ML agent engagement 
data. 

 
1.2 Key deliverables 
• A PCG system that creates interactive, top-

down, 2D room levels through algorithms 

such as random generation, and A* 
pathfinding. 

 

• A trained, ML agent that behaves similarly to 
a human player, that rewards (engages) 
itself through room exploration, and item 
collection. 

 
2. Research questions 
The project explores the following research 

questions, focused on ML, PCG, and the 

integration of the two: 
 
• How accurately can ML agents simulate 

human player behaviour? 
 

• What PCG techniques can be used to 

generate interactive gameplay levels? 
 
• How effective is machine learning (ML) as a 

method for improving procedural content 
generation (PCG) outputs? 

 

• How does feedback from ML agents on PCG 
outputs compare to feedback from human 
testing? 

 

3. Literature review 
3.1 Procedural Content Generation 
Procedural Content Generation (PCG) “is the 

algorithmic creation of game content with limited 
or indirect user input” (Togelius, 2011). The 
definition stems from Togelius et al. research into 
what PCG is, with discussion first starting on 
what PCG is not. PCG is not “offline” and “online” 
player-created content, by developer or player, 
but is closer to being “random”, “adaptive”, or 

both, algorithmic generations of game content. 
 
One of PCG’s first uses in video games is seen in 
dungeon crawler Rouge (A.I. Design, 1980), 
which used dungeon generation as its PCG 

method. A PCG level was randomised through a 

seed upon the player leaving the previous level 
by walking down a set of stairs (Procedural 
Content Generation Wiki, 2016). Games like The 
Binding of Isaac (McMillen, 2011) and Enter the 
Gungeon (Devolver Digital, 2017) similarly utilise 
dungeon generation to create levels by 
connecting rooms together through corridors. 

 
Differing from this, platformer video game 
Spelunky (Mossmouth, 2008) main gameplay 
loop is centred around its PCG implementation, 
with generated dungeons being entirely unique. 
Spelunky’s 4x4 grid (16 rooms) generation 
follows parameters around its four different room 

types, where a valid solution path to complete 

the level is generated first, and unoccupied grid 

https://youtu.be/ntM_Sgg6gpA?si=Zh6yP5F_6sixF7Ka
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spaces generated with “side room” style rooms 
(Kazemi). 
 
PCG can be achieved through different methods 

and techniques depending on suitability, 
including Cellular Automata and Wave Function 
Collapse. When developing the artifact, these 
algorithms were researched for applicability. 
 
3.1.1 Cellular Automata 
Cellular Automata (CA) is a method of PCG that 

uses a grid of cells that each have a finite 
number of states (Adams, 2017). Over a number 
of time steps, the state of each cell changes 
depending on a set of rules which are based on 
the states of neighbouring cells. Cave generation, 

the generation of cave systems and underground 

environments, is one of the most common 
applications of CA in video game development, 
as the rule-based states of neighbouring cells are 
effective at creating natural and complex looking 
cave structures. 
 
CA might be used over other PCG methods due 

to being computationally inexpensive, making it 
valid for real-time applications, such as fluid 
dynamics in video games. Games like Minecraft 
(Mojang Studios, 2011) and Dwarf Fortress (Bay 
12 Games, 2006) use CA, with the former using 
CA rules for simulating water flowing, fire 
spreading, and prior to version 1.17, the 

“biomes” (style) of each region in the world. 
 
3.1.2 Wave Function Collapse 
The Wave Function Collapse (WFC) algorithm is a 
texture synthesis algorithm initially developed by 
Maxim Gumin (2016). WFC started seeing use in 

PCG for its effectiveness in creating complex 
patterns in generation based on its inputs. WFC 
follows similar principles to quantum mechanics 
in the form of superposition, which is when a 
particle (or tile in WFC) exists in multiple states 
at the same time. WFC divides a tile-based level 
into small chunks, with each tile existing in 

superposition. Constraints reduce the possible 
states of these tiles until they are eventually in a 

single state, “collapsing” the tile. The final output 
of all collapsed tiles results in a pattern, or level 
generated. Real-time strategy game Bad North 
(Plausible Content (2018) utilises WFC for 
generating its islands. 

 
WFC might be used over other PCG methods due 
to versatility; with open-source examples and 
versions available for multiple programming 
languages like C++ and Rust, and video game 
types such as 2D, and 3D. The artifact is 

designed around 2D, top-down constraints, which 
has been shown as working effectively with WFC 
algorithms. 
 
3.2 Machine Learning 

Machine Learning (ML) “is a category of artificial 
intelligence that enables computers to think and 
learn on their own” (Alzubi, J, 2018). The term 
“machine learning” stems from pioneer of 

artificial intelligence (AI), Arthur Samuel, in 1959 
where he developed one of the first self-learning 
systems through work on computer checkers. 
 
ML continued development into different 
methods, including reinforcement learning (RL) 
and supervised learning (SL). ML’s most 

apparent use in video games development was 
the improvement of game AI systems such as 
non-player character (NPC) behaviour, seen in 
games like Creatures (Creature Labs, 1996), and 
Forza Motorsport 7 (Turn 10 Studios, 2017). 

 

When choosing to implement ML, it is important 
to consider the different paradigms available, 
and to select which is most appropriate. 
 
3.2.1 Reinforcement Learning 
Reinforcement learning (RL) is a machine 
learning paradigm that aims to improve agent 

performance through trial-and-error experiences. 
An agent’s goal is to maximise a reward or to 
complete an objective by using received 
feedback to adjust its actions. Reinforcement 
learning “dates back to the early days of 
cybernetics and work in statistics… and computer 
science” (Kaelbling, 1996). 

 
RL differs from other paradigms like supervised 
learning, for example: In RL, after an action of 
an agent, the agent is immediately told their 
reward and the next state they will be in, but are 
not told what action would have been best in 

their long-term (future rewards). This makes RL 
suitable for “search and planning” based-
scenarios, which can be commonly found in video 
games, such as high score maximisation. 
 
RL’s first use in video games is often attributed 
to Creatures (Creature Labs, 1996), an artificial 

life simulation game created by lead programmer 
Steve Grand, a computer scientist. The player 

would raise, and train virtual creatures called 
“Norns”, which would exhibit more complex 
behaviours and learning patterns due to their 
utilisation of neural networks, which would over 
time develop based on interactions from the 

player and their environment. Creatures, and its 
series spanning three main games, were 
financially and critically successful, with all 
employing RL for AI behaviour. 
 
In applications as a game development tool, 

Forza Motorsport 7 (Turn 10 Studios, 2017), a 
racing simulation game, utilised ML and RL to 
improve their “Drivatar System”. Drivatar is Turn 
10’s advanced AI driving system for the Forza 
series, and was improved in factors of realism 

using ML. Agent’s were trained to race around 
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individual racetracks 26,000 times (Esaki, C. 
2023) to learn the fastest racing lines, and in 
gameplay, these agents might factor in human 
mistakes into their behaviour to improve realism, 

such as braking too late for corners. 
 
3.2.2 Existing machine learning tools in 
Unity 
In the Unity ecosystem, existing tools for ML are 
available, the most notable being the Unity 
Machine Learning Agents Toolkit plugin (ML-

Agents) (Unity Technologies, 2017). ML-Agents is 
an open-source project that gives developers 
tools to create and train intelligent ML agents 
using ML algorithms, such as supervised learning 
(SL) and reinforcement learning (RL). As the 

algorithms and implementation has been 

simplified to a downloadable plugin for Unity, 
development time can be focused and allocated 
towards the development of expected agent 
behaviour. 
 
ML-Agents major strength comes from its variety 
of example projects that showcase different use 

cases for the tool, along with providing 
developers useful starting points to streamline 
development. Examples include “Basic”, which 
uses RL to teach an agent to move towards a 
reward sphere in a 2D space, and “GridWorld”, 
which uses RL to teach an agent to avoid 
obstacles to move towards a goal in a grid-world 

space. Along with this, extensive documentation 
and courses like Immersive Limit LLC’s “ML-
Agents: Hummingbirds” course (Immersive Limit 
LLC, 2020) provided useful information in the 
development of the artifact. The course discusses 
implementations of RL, through reward structure 

creation, and training and re-training, to create 
intelligent agents in a 3D environment, which 
found high applicability in the artifacts 2D 
environment. 
 
3.3 Procedural Content Generation via 
Machine Learning (PCGML) 

Procedural Content Generation via Machine 
Learning (PCGML) is “the generation of game 

content by models that have been trained on 
existing game content” (Summerville, 2018). 
Summerville’s research into PCGML is centred 
around content being generated “directly” from 
the ML model, meaning the outputs of a 

machine-learned model is itself interpreted as 
content. 
 
Similar to the artifact, the research focuses on 
the creation of “functional” game content 
generation as opposed to “cosmetic” game 

content generation. Functional content 
generation might include the placement of 
enemies, the layout of game levels, and the 
placement of interactable elements (items, 
buttons), to enhance gameplay experiences. 

Cosmetic content generation might include 

visuals (textures, scenery), to enhance game 
immersion. 
 
Summerville’s research into PCGML suggests 

several use cases and applications in game 
development. Autonomous generation is the 
“generation of complete game artifacts without 
human input at the time of generation”; with 
PCGML, a designer might create artifacts in the 
target domain as the model for the generator, 
and then the chosen PCG algorithm can generate 

content in this style, avoiding the need of 
designers to turn their design intentions into 
code, saving development time and expenses. 
 
PCGML also offers a lower barrier to entry for 

developers to generate functional game content, 

as a programming language is not required to 
specify generation of acceptance criteria. Content 
design in PCGML is AI-assisted, with a human 
designer and an algorithm working together to 
generate content; as the designer is training the 
ML algorithm through examples in the target 
domain, the inputs and outputs required of the 

ML algorithm is given by the designer. This 
results in no need for a programming language 
to communicate to the ML algorithm. 
 
4. Research methods and Ethics 
4.1 Research methods 
The research methodology for this project 

consists of secondary research, comprising 
books, journal articles, research papers, and 
code documentation; on the topics of PCG, ML, 
and both. The main resources for obtaining 
research are Google Scholar, and GitHub 
(GitHub, 2024). 

 
Secondary research was chosen due to the 
plethora of primary research conducted on PCG 
and ML. By using this primary research, the 
artifact can build on established knowledge, and 
utilise recognised techniques. 
 

Secondary research and application were split 
into the following: 

 
• Discovery of existing literature and 

techniques in PCG and ML, which were noted. 
 
• Evaluation of material for relevance to the 

project, depth, and possible artifact 
application. 

 
• Application into the artifact, through code, or 

in evaluation of PCG/ML outputs during 
development. 

 
4.2 Ethical and professional principles 
The project did not include any participant 
testing or data, and did not require any consent 
waivers. However, the use of PCG in the project 

raises concerns indirectly towards the loss of jobs 
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as a result of automation. As noted in Andrew 
Doull’s “The Death of the Level Designer” (Doull, 
2008), PCG continues to make inroads into 
traditional level designer roles due to it being 

easier to build and deploy for studios, making 
these roles potentially “obsolete”. To mitigate 
these concerns, the artifact’s scale and focus is 
around the usage for small developer teams or 
individuals, which would benefit from the 
additional time and resources that would be 
provided and used elsewhere in development. 

 
To adhere to professional guidelines and 
standards, all code implemented from research 
and referencing was cited and credited through 
code comments, and are acknowledged in the 

report through referencing and bibliography 

additions. Additionally, all assets sourced 
externally are licensed for commercial and 
research use, such as CC0 “No Rights Reserved” 
(Creative Commons, 2024) licensed material 
including Tiny Dungeon (Kenney, 2022). 
 
4.3 Research findings 

4.3.1 Why use Procedural Content 
Generation in video game development 
 
A critical element of the research phase was the 
reason why developers might use PCG in their 
game development. Research from sources such 
as “Procedural Content Generation in Games” 

(Shaker, 2016) highlighted the usefulness of 
reducing the need for human designers and 
artists, noted as being slower and more 
expensive than PCG tool alternatives. Alongside 
this, PCG enable completely different and unique 
types of games to be developed; games in the 

‘Rouge-like’ genre commonly use PCG elements, 
as rogue-likes main gameplay loops rely on 
randomisation and variability, which PCG 
effectively enables. 
 
These findings support the project’s aim to 
automate time and cost intensive areas of game 

development, and aims of creating unique 
gameplay experiences. Due to PCG being more 

necessary in rogue-like games, the project’s 
scope was limited to PCG in this genre (top-
down, 2D) as opposed to a generalisable PCG 
tool. 
 

4.3.2 Why use Machine Learning in video 
game development 
Research from G. Skinner et al. (2019) suggests 
that current implementations of video game AI 
leave users dissatisfied, where “bad” AI is easy 
to notice whereas “good” AI is expected of a 

game. In the application of ML as a tool, it is 
potentially “limitless”, and its use case as a user 
testing substitute has been explored in research 
such as Niklas Kühl et al. (Kühl, N. 2022). Kühl’s 
study of pattern recognition in 44 humans 

compared to three different machine learning 

algorithms suggests that ML might learn slower, 
but can reach similar or higher levels of 
performance than humans. 
 

These findings support the projects proposition of 
ML being a cost-effective substitute for developer 
testing of generated content; as after the initial 
difficulty of learning, their feedback provided 
might be comparable to humans. Considering 
this difficulty of initial training based on research, 
the input parameters of the ML agents were 

reduced in scope, to allow more time for fine-
tuning expected behaviour of agents. 
 
5. Practice 
5.1 Artifact scope and delivery 

In the initial proposal of the artifact, the project 

aimed to create a generalised set of PCG 
development tools that could generate multiple 
types of PCG, such as both 2D and 3D 
environments. 
 
After feedback from tutors and peers over scope, 
the artifact development firstly considered the 

type of PCG to implement. A 2D, top-down, tile-
based system was chosen due to the following: 
 
• Ease of management: Management and 

generation of content in a 2D space is easier 
to effectively achieve than in 3D spaces, 
which allowed greater time investment in 

refining PCG systems. 
 

• Visual clarity: Results of PCG are easier to 
visually identify due to camera perspective 
showing all elements of PCG, which helps in 
debugging and assessment of PCG 

effectiveness.  
 
• Suitability in genre: PCG is a common 

element in rouge-like games, which often 
utilise 2D perspectives, making the artifact 
more applicable in professional contexts. 

 

5.2 Development of PCG systems 
5.2.1 Evaluating existing Unity systems 

To develop the 2D PCG systems, it was essential 
to expand Unity’s implementations of Tilemap 

and TileBase, which are components of Unity’s 

Tilemap system (UTS) package. This package 
was chosen to speed up initial development of 
the artifact, and proved beneficial as a set of 
systems to expand and develop from. 
 

Evident problems in the components of UTS were 
quickly identified in development. Unity Tilemap 

do not inherently support the ability to identify 
which tile in its grid was collided or triggered, as 
these collisions/triggers are registered on all tiles 
as one shared collider, making it unable achieve 
specific method execution such as deleting items 
on pickup. Unity TileBase do not possess 

features like identifying their type (e.g. if they 
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are a wall, door, etc.), and their world position 
when their owner Tilemap is not known. 

 
5.2.2 Tiles 

Figure 1. Tile abstract class inherited by all 

custom tile classes. 
 

In response to UTS limitations, the artifact 
creates custom Tile class implementations of 

TileBase. The Tile class contains data that is 

accessed by various systems such as 
TriggerTilemap. Each Tile stores its TileBase 

asset, its tile type (e.g. floor), references to its 
owner tilemap and position data, and the 

MLAgent of its simulation. Following object-

oriented programming (OOP) principles of 
inheritance, this abstract base class (Figure 1.) is 

inherited and expanded in derived classes, such 
as TileDoor, to provide functionality to various 

systems. 
 
Following compositional design principles, which 
complement OOP practices of polymorphism, 
interfaces like ICollidable and IInteractable 

were implemented to modularise components 
that were used in different Tile derived classes. 

C# not allowing multiple class inheritance but 
allowing multiple interface implementation, along 

with C# allowing to query classes if they contain 

a specified interface, made interface use effective 
in the artifact. 
 
TileInteractable critically implements the 

IInteractable interface, enabling derived 

classes to override the Interact method. With 

polymorphism, the calling of this method would 
execute the derived classes implementation of 
Interact, such as in ItemCoin, which rewards 

the MLAgent stored in its data. 

 
As the project progressed, the necessity for more 
expansion of data and methods in Tile became 

evident, and new classes and interfaces were 
developed as a result. 

 
5.2.3 Tilemap 

Tilemap was expanded into two main systems, 

management of all tilemaps in a simulation in 
TilemapSystem, and the handling of collisions 

and trigger events in FloorTilemap, 

CollidableTilemap, and TriggerTilemap. 

TilemapSystem holds data of the generated room 

and tilemaps in a simulation, and critically stores 
the list of Tile classes that can be instantiated 

by the PCG systems. This was added to provide 
flexibility to the user over the appearance and 
functionality of PCG generation. This is seen in 
Figure 2. below. 

Figure 2. Unity Inspector UI of TilemapSystem, 

showcasing Tile list for PCG. 

 

To address weaknesses in UTS with identifying 
the tile involved in collision/trigger, classes 
FloorTilemap, CollidableTilemap, and 

TriggerTilemap resolve the tile by identifying 

the cell position of the collision and checking the 
Tile 2D array for the Tile at this position. 

Polymorphism then provides the correct method 
execution from the tile identified at the hit 
position (Explore, Collide, or Interact). 

 
5.2.4 PCG initial development 
After implementation of core functionality 
required for the PCG tool, development of PCG 

systems and methods was prioritised. Initial 
implementation of the two major components, 
PCGSystem and PCGMethods was prototyped 

alongside Tile and Tilemap system 

development. As a result, problems were 
identified in both components which led to 

eventual refactors. 
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Notably, PCGSystem contained both user 

changeable data (width/height of room), and all 
data related to tilemaps; this was problematic, as 
the class became bloated with both data and 
method handling for PCG. In PCGMethods, 

prototype development utilised only UTS, which 
the lack of features compared to Tile showed 

evidently in PCG results and the development of 

PCG methods. 
 
5.2.5 PCG systems and methods 
PCGSystem was refactored (PCGSystemRefactor) 

to act as an intermediary between the tile and 
tilemap data in the TilemapSystem, and PCG 

methods that generate content (PCGMethods). 

This was done to centralise the user control of 
PCG into a single system, with user control over 
tiles used in generation being separated to 
TilemapSystem. This also made development 

more manageable due to the more modular 
approach. A struct data container of the 

generated room is stored in the PCGSystem, 

which is a Tile 2D array. A 2D array was chosen 

for its coordinates layout of tiles matching the 
grid based tilemap in the artifact. 
 

To give control to users, the PCG generation 
method can be specified (e.g. A* Pathfinding), 
along with the room sizing; this alongside tile 
input control in TilemapSystem gives a 

comprehensive set of parameters for generation, 
which are passed to PCGMethods. 
 

PCGMethods (PCGMethodsRefactor) continued a 

similar approach to its previous iteration in 
separating generation logic into distinct and 
reusable methods, however, it now utilised 
custom Tile classes. Instantiation of various 

Tile derived classes are provided in methods 

and used for all PCG generation methods in the 
class. On a method call for generation (e.g. 

AStarPathFindingGeneration), room data and 

tilemap data are passed to the system, along 
with an optional offset and seed for shifting tile 
positions and random number generation (RNG) 

respectively. In methods such as 
AStarPathFindingGeneration, walls and doors 

are the first tiles generated and added to the 
Tile 2D array to ensure that PCG confines to the 

rules of a room layout, of four doors in the centre 
position of each room wall, and walls as the 
outermost tiles in a grid. 

 
The generated room is returned as a RoomData 

struct, with the appearance on the tilemaps 

being updated on RenderRoom method call; this 

was modularised to make room rendering be 
independent from the type of generation used. 
 
5.2.6 Methods of PCG 

PCGMethods access different methods of PCG, 

which are modularised to different classes to 
keep the codebase organised. AStarPathfinding 

is the most functional algorithm method for PCG 
developed, and was prioritised under 
consideration of the artifact’s timescale. 
Implementation of this method would be faster 
due to greater number of resources to reference, 
along with flexibility to different sized grids. 
 

After being passed the current Tile 2D array, 

along with a list of door positions, 
AStarPathfinding ensures a valid path (non-

collidable and non-trigger tiles) is created for 
each door to reach another door. This is done 
through node representation, where each point in 
the Tile 2D array is represented as a node 

storing its position, the sum of GCost (movement 
cost from start node) and HCost (Heuristic cost 
to the end node), and the nodes parent node. 
After node evaluation and neighbour exploration, 

a path is traced, and after all paths have been 
traced for each door, a list returning the path 
grid positions is passed to PCGMethods. 

 
With the generated list, TileFloor tiles are 

generated at the path positions to ensure a valid 

(completable) room. For the rest of the grid, 
RNG, which might be weighted by a trained ML 
agent passing EngagementMetrics, determines 

the rest of the tiles generated for the room. 
 

5.3 Development of ML systems 
5.3.1 Implementation of Unity ML-Agents 
The next stage of the artifact’s development 
focused on ML. After research into possible 
implementation options, Unity ML-Agents proved 
most suitable for the artifact. This was due to 
easy incorporation into the project due to its 

plugin integration, and the pre-built frameworks 
for machine learning models, which sped up 
development significantly compared to alterative 

options such as bespoke. 
  
After successful isolated testing of movement 

code, this code was transferred to the developing 
MLAgent system, in its Heuristic method 

inherited from ML-Agents Agent. Initial 

development used a heuristic behaviour type for 
the ML agent, which provided the valuable ability 
to control the agent with the keyboard during 
testing before ML had its implementation. 
 
5.3.2 ML agent 
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Figure 3. MLAgent prefab with 2D ray 

perception sensors, and multiple colliders. 
 
Figure 3. illustrates the decision to include two 
colliders on the MLAgent prefab, the larger being 

used for physical collisions, and the smaller 

trigger collider for trigger collider detection. This 
was implemented in response to problems with 
registering trigger collisions in the 
TriggerCollider system, which would identify 

the wrong tile being triggered in its grid. This 
change made tile identification more accurate. 
 
2D ray perception sensors were attached to the 

MLAgent, which covered 360 degrees of vision for 

the agent. These raycast sensors detect and 

mark hits on the tagged objects relevant to the 
agent, including obstacles, items, and doors. 
During development, problems with sensor 
Layermasks were identified, where raycasts 

would mark hits with the agent they were 
attached to. This was resolved by creating a new 
Layermask for the agent prefab that was not 

marked as a hittable layer. 
 
Observations in an agent’s environment are 

collected by these 2D sensors, along with 
observations added in CollectObservations. 

Critical information is added as observations 

which are eventually passed to 
OnActionRecieved for decision of actions. This 

information includes the agent’s current local 
position, the agent’s position on the tilemap, the 
distances between the agent and the nearest 
item/door/obstacle (tiles), and the tile position of 

those nearest tiles. These observations provide a 
wide-ranging list of data sources for the agent’s 
neural network to use in decision-making. 
 
The OnActionReceived method determines what 

action the agent should take based on 
observations taken of its environment. To speed 
up development and fine-tuning of ML, the 
actions available to the player (agent) was 

scoped to focus on movement. Actions such as 
combat were beyond the timescale of the project 

due to increased complexity of reward structures, 
and higher difficulty in achieving expected 
behaviours for trained agents. 
 

EngagementMetrics of a currently playing room 

are stored in the form of a data struct owned by 
an MLAgent, which tracks overall engagement 

through adding exploration float data (floor tiles 

the agent moved in) and number of items 
picked-up data. This data is passed to the 
PCGSystem when an MLAgent is assigned to use a 

trained brain model for behaviour. 
 
5.3.3 Training and re-training 
With numerous ML methods available in ML-
Agents, the artifact chose reinforcement learning 

as the method for training agents. This was due 
to the process of RL agents trying to maximise 
rewards being like how a player might try reward 
themselves in gameplay. Reward structures of an 
agent (e.g. item pickup) matched meaningful 
gameplay interactions that would be expected of 
a level, and these were passed on from the agent 

in the form of EngagementMetrics to PCG 

systems for altering of generation results. 

 
Figure 4. PCG – Training Environment 

training eight agents simultaneously. 
 

Eight Simulation prefabs were run 

simultaneously during the training of agents, 
reducing the time taken to train agents, as seen 
in Figure 4. Each Simulation ran independently, 

with agent episodes ending with through an 
agent reaching its maximum time step of 5000 
steps (actions), or through successful completion 
of a room through the triggering of a TileDoor. 

Allowing the completion of a room ensured 
agents would have a consistent end-state 

decision for their actions. Training sessions would 
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be ended upon average reward results remaining 
stable and levelled off, as further gains from 
training would be negligible. 
 

5.3.4 Engagement results 
The final element to implement of the artifact 
was incorporating EngagementMetrics into PCG. 

This required trained ML agents, as they 
substitute for human-testing in PCG results. 
EngagementMetrics influence the generation of 

rooms, acting as a “weighting” for random 
generation elements; for instance, a room will be 
more likely to generate more items if item pick-
up engagement was low. 

 
When a new room is to be generated in 

PCGSystems, a comparison is made to the 

previous rooms engagement result to the current 
highest engagement room generated. If the 
previous room generated higher engagement 
from an agent, the room’s layout (Simulation) 

is saved to a prefab in Unity’s asset folder. This 
room can then be imported into a Unity scene for 

playtesting. 
 
5.4 Management of systems 
To create consistent templates that manage the 
core systems of the artifact, a Simulation script 

and prefab was created, acting as an overall 
manager that can be dropped into any Unity 
scene. A Simulation prefab instance holds 

references to the three major systems of 
MLSystem, PCGSystem, and TilemapSystem. 

Simulations can be reset upon two conditions, a 

player/agent completes a level by triggering a 
door, or if during agent training, the agent’s 
episode begins (once every 5000 steps). 
“Engaging” rooms are generated and saved as a 
Simulation. 

 
5.5 Project management, documentation, 
code 

Figure 5. View from JetBrains Rider showing the 
integration of XML code comments and IDE. 

 
In the development of the artifact, professional 
software development practices were employed 
to ensure efficient iterative development. 

Practices like clear and extensive documentation 
that integrates with integrated developer 
environments (IDE’s), use of version control, 
atomic commits, full usage of GitHub project 
management tools like GitHub Issues and 
Projects, and adherence to C# standard style 
guides, ensured effective project development. 

 
To maintain high consistency in code quality and 
readability, adherence to C# coding conventions 
like PascalCase for method/function signatures 
(e.g. MyFunction), and camelCase for member 

variables (e.g. healthRemaining) was 

maintained. These conventions ensured readable 
code for external readers familiar with C#. Code 
commenting was extensive, with integration with 

IDE’s through tagging for methods, functions, 
and classes. Figure 5. provides an example of 
code commenting integration with JetBrains 
Rider (JetBrains, 2024). 
 
Git (Linus Torvalds, 2005) was chosen for the 
version control system as its detailed history 

tracking and branching features provided 
necessary rollbacks in case of project 
development issues. Atomic commits 
(Hovhannisyan, 2021) were utilised for 

committing practices, as imperative language 
and small self-contained commits make tracking 
changes and issues easier to identify. Git was 

also chosen due to its use by GitHub, the chosen 
code repository hosting provider. 
 
GitHub provides useful project management tools 
that were employed during development, like 
GitHub Issues, a tracker for bugs, 

enhancements, and other requests. GitHub 
Projects displays data related to Issues in 
common views, such as kanban style boards, 
Project Roadmaps, and GitHub tables, which 
made project tracking easier. 

Figure 6. View from GitKraken of artifact commit 

history, showing the “Closing” feature. 
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GitHub Issues seamlessly integrates with 
GitKraken (GitKraken, 2015), the Git GUI client 
chosen for the project, through displaying 
currently opened issues, and the ability to 

reference and close issues directly through Git 
commit messages, allowing for effective tracking 
of tasks. Figure 6. illustrates the view of the 
artefact’s repository from GitKraken’s user-
interface (UI). 
 
6. Discussion of outcomes 

To accurately conclude the outcomes of the 
artifact, the discussion will focus on the three 
project objectives and assess their level of 
achievement. The artifact aimed to deliver a PCG 
tool that generates “functional” (Summerville, 

2018) levels that are completable, trained ML 

agents that replicate player behaviour in the 
level environment, and a system for improving 
PCG generated based on trained agent data. 
 
6.1 Evaluation of PCG 
6.1.1 PCG tool 
In analysis of PCG results, the first element is 

usability and extendibility of the PCG tool. High 
levels of modularisation of code and in-depth 
documentation enhances the practical 
applicability of the artifact as a development tool 
to be imported into game development projects. 
Unity features such as prefabs make for easier 
importing of simulations in game scenes, and 

Unity Header and Tooltip provide clarity to not 

immediately obvious elements of the Unity 
Inspector, which were effective in development 
as a form of documentation. 
 

Developers are provided with an accessible code 
base that would be easy to expand with further 
PCG implementations and possible automation of 
ML testing with unit tests. Unit testing is the 
process of testing individual parts of a software, 
often autonomously, to ensure they meet test 
case expectations (GeeksForGeeks, 2024). 

 
6.1.2 PCG results 
Withington (2024) conducted a survey on the 
most common metrics and features used in the 
assessment of PCG levels. For the purposes of 

the evaluation, the relevant metrics that will be 

used in PCG result assessment are: 
 
• Level Fitness – Single numerical figure to 

quantify the quality of the level. Factors of 
consideration are the diversity of items, 
placement of obstacles, and exploration 
opportunities in the form of empty tiles. 

Numerical figures 1 – 10. 
 

• Solvability & Win Rate – A binary flag if the 
level can be completed or not. Pass or fail. 

 
For the evaluation of ML in PCG, the engagement 
score was also noted. However, this not be used 

in the evaluation of the PCG results. 

Level 
Level 

Fitness 
Solvability 
& Win Rate 

Engagement 
Score 

Fitness vs. 
Engagement 

Variance 

 

6 Pass 2 (1.18) -4.82 

 

7 Pass 5.5 (3.24) -3.76 

 

4 Pass 10 (5.88) 1.88 
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Table 1. Comparison of generated room layouts under Withington’s (2024) common PCG assessment 
metrics. 
 

The results from Table 1. above highlight the 
success in the implemented PCG methods for 
generating a full, completable, level with 
expected interactable elements and obstacles 
present. All levels generated ensure a pathway to 
doors for level completion, and this element of 

PCG objectives was successful. However, 
limitations can be seen in some generations, for 
instance, the “cluttered” appearance of 
engagement score rooms 10 and 12, with some 
items being inaccessible to a player. Breakable 

obstacles, which was out of scope for the 
development of the artifact, would have 

mitigated this issue in generation. 
 
It is worth note, that Withington (2024) themself 
acknowledge that this data cannot be the sole 
identifier of the quality of individual generations, 
and that quantitative evaluation might need a 
new framework entirely. 

 
6.2 Evaluation of ML 
6.2.1 ML agent behaviour 
Evaluation of the behaviour of agents during 
training is crucial to the measurement of success 
of the artifact. The first successful training 
session, session 2 (orange) took 1.82 million 

steps (actions) to achieve desired agent 
behaviour. During their training, agents were 

able to identify the flaws of the A* pathfinding 
generation algorithm. As RL encourages agents 
to maximise their rewards per episode, agents 
quickly realised (around 750,000 steps) that a 
valid path to a highly rewarding door would 
always be present, and directly in sight of their 

2D ray perception sensors. They quickly adopted 
the behaviour of getting to a level door as 
quickly as possible, possibly collecting items if 
nearby on their route. The risk of hitting an 
obstacle and receiving a negative reward was too 

great. 
 

To counteract this, new implementations of 
sessions 5 (pink) and 7 (green) were made that 
applied exploration rewards for an agent, along 
with tweaking of reward values for hitting 
obstacles and picking up items. Observation of 
their training, along with data from Graph 1., 
suggested that the previous sessions issue had 

been mitigated, with agents exploring rooms far 
more to achieve exploration rewards. However, a 
new issue was presented, as agents neglected to 
complete levels by going to a door. Slight trends 
upwards beyond the 500,000 step range were 
due to agents being more effective at exploring 
and picking up items, and was not due to 

completing levels through door exit. 
 

 

3 Pass 12 (7.06) 4.06 

 

8 Pass 17 (10) 2 

   

  

  

  

  

 

 

 

 

 

                               

Graph 1. Agent rewards in training for steps taken. X axis: Number of steps (actions). Y axis: Reward. 
Training session 2 (orange), training session 5 (pink), training session 7 (green) 
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The tweaking of hyperparameters, like 
curiosity, or editing of reward structures, such 

as gradual rewards for getting closer to a door, 
could have helped alleviate the issues presented 
in sessions 5 and 7. 

 
6.2.2 ML training outcomes 
In analysis of the effectiveness of ML training and 
the resulting outputs of the trained agents, visual 
observation of their behaviour and data on their 
average rewards was used for evaluation.  
 

As Graph 1. presents, it is evident that training 
RL agents quickly identify environmental features 
that positively/negatively reward themselves. 
The training sessions all shared significantly 

sharp increases in rewards during the early 
training steps, during the 0–500,000 steps 
range. Initially, agents would end episodes with 

more negative rewards than positive, due to 
colliding with obstacles often, which was 
confirmed in visual observation of agents during 
their training. However, these negative rewards 
quickly identified to agents the necessity to avoid 
collision with obstacles, and their behaviour 

adjusted accordingly. This met an expected 
outcome for their end behaviour, which is 
obstacle avoidance. 
 
From the 0-500,000 step range onwards, training 
sessions saw fluctuation in rewards, most evident 

in training sessions 5 (pink) and 7 (green). Visual 

observation in training identified agent’s difficulty 
in being able to observe its whole environment. 
2D ray perception sensors would hit the first 
valid object it encountered, meaning important 
information such as items behind obstacles tiles 
would not be known to an agent. Whilst this was 
considered, and mitigation attempted through 

the agent tracking its nearest door/item/obstacle 
position, an observation of the whole 
environment (e.g. the tilemap grid itself, with 
each Tile position observed) would have led to 

more effective agent training and behaviour. 
 
From the results, weaknesses of RL were 

identifiable. The most notable being the extended 

periods of time required to get expected agent 
behaviour, as this often requires minor changes 
to code which would take time to reflect during a 
new training. In a professional context, this time 
intensive set-up would need to be evaluated, as 
the time taken to fine-tune agent behaviour 
might exceed the time saved from not requiring 

human testing of PCG results. 
 
6.3 ML in PCG evaluation 
To evaluate the effectiveness of ML in influencing 
PCG outputs to create more engaging levels, the 
outputs of engaging levels were saved as prefabs 

for comparative visual and layout analysis. This 
was done under the same framework as PCG 

results evaluation, based on Withington (2024). 

The highest recorded engagement score by an 
agent was 17, whereas the highest-level fitness 
score can be a 10. In consideration of this, 
variance scores were calculated under the 

treatment of an engagement score of 17 being 
the fitness equivalent of a 10.  

(
𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒

ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑒𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 (17)
 × 10) 

 
Using Table 1. for evaluation, human 

engagement metrics fluctuated between high and 
low variance compared to agent assessment. 
Notably, rooms with higher human engagement 
scores followed layout trends of larger, open-
spaces with all items being fully accessible to a 
player. These preferred rooms would often have 

higher levels of variance, as the samples from 
Table 1. highlight.  
 
In contrast, upon visual observation of agent 
behaviour and influence on PCG generation, 
higher engagement rooms shared common 
elements of higher item density rooms, and 

items not obscured by obstacles. In rooms where 
the agent was unable to pickup items obscured 
by obstacles, item generation will increase 
greatly for the next room generated, which would 
lead to less obstacles to hinder engagement. 
 
The results evidently show the difficulty in 

quantifying engagement metrics to a 
programmable metric of assessment. 

“Engagement” is inherently a subjective, human 
concept. Whilst agents might prioritise rewards 
based on their predefined reward structures, this 
does not fully translate to human engagement. A 

broader range of engagement metrics could have 
been provided to establish a better 
understanding of what makes a level engaging, 
for example, exploration variety in the form of 
branching paths to the same end point. 
 
In hindsight, elements of human testing of ML-

influenced PCG levels would have flagged the 
validity of the results the agent was providing for 
engagement. If results were inaccurate to what a 
human might deem engaging (such as the 

variance score in Table 1.), the ML system could 
be updated accordingly. Additionally, the feeding 
of “engaging” and “non-engaging” level data to 

the ML system (as Withington’s (2024) metric of 
“similarity to Training Data” describes) would 
have helped to establish the accuracy between 
EngagementMetrics and user-perceived 

engagement. 
 
 
7. Conclusion and recommendations 

The project aimed to investigate the application 
of ML in the evaluation of PCG outputs. The 
findings and results presented showed the 
challenges of creating “functional” game content 

with PCG, and highlighted the necessity for more 
advanced PCG methods such as WFC to generate 
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this content. The ability to accurately quantify 
engagement as a programmable metric was a 
limitation as the findings show, as engagement 
leans towards subjectivity. Despite this, the 

findings highlight the strengths of algorithms like 
A* pathfinding in ensuring completable levels, 
along with the strengths of ML in being able to 
learn in its environment from observations and 
reward structures, and alter its behaviour 
accordingly. 
 

The next logical steps for the project would 
involve implementation of more advanced PCG 
generation methods such as Wave Function 
Collapse and Cellular Automata. The core 
functionality developed in the current artifact 

would provide an effective base for these 

methods. Development of WFC and CA would 
enhance the number of PCG options to a user, 
and provide more sophisticated room layouts. 
These PCG methods would also allow for 
comparative analysis of PCG results to identify 
the effectiveness of methods in different 
scenarios (e.g. Rooms that are more challenging, 

rooms that are less rewarding, etc.). 
 
As surmised from Summerville (2018), as the 
importance of PCG increases in game 
development, so too does the necessity for 
higher quality PCG results, with or without 
human involvement. With ML still being a 

relatively new paradigm for exploration in 
incorporation for PCG, the impact of this project 
would be most applicable as a continued 
research survey in an academic journal. 
 
After further research and development, either 

through academic journals or open sourcing the 
code under a CC0 license, the project’s 
commercial potential is high. Rough-like games 
would see the most benefit from greater 
engagement and randomness in their content 
delivery, whilst other game genres might see 
applicability in the PCG or ML implementations, 

and incorporate it into their own code. 
 

The project successfully demonstrated the 
incorporation of machine learning into the 
evaluation of output results of procedural content 
generation, and highlights machine learning’s 
strengths in autonomous replication of human 

behaviour. The project is viable for open-
sourcing, so that users can continue 
development of the PCG and ML systems 
present, either for research or commercial 
purposes. 
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Appendix A: Project Log 
 

Date of entry Task Summary 
Additional 
Comments 

11/01/2024 1. Add ML agents 
Added ML-Agents package to 
project. Set up Anaconda 
environments for future training. 

 

24/01/2024 

1. Player Movement 

 
2. PCG Perlin Noise 

generation method 

Player movement added to play 
game scenes. 
 

To test Unity Tilemap System 
(UTS), perlin noise generation 
method added. Planned to be 
scrapped for random (but 
completable level) algorithm first. 

 

26/03/2024 

1. Tile Custom Classes in 
PCG Methods 

 
2. Door checking in PCG 

Development of custom Tile 

classes that extend functionality of 
UTS. Abstract so its not accidently 
instantiated by itself. 
 
Added checks for door locations to 
fix issue. 

 

28/03/2024 

1. Meeting with Supervisor 
 

2. Custom Tile work 
continued. 

Showed current state of the 
artifact. Very much behind 
development and personal goals 

for the project due to personal 
circumstances. Current code is 
well written and implemented, but 

needs far more done. Requested 
helping writing for additional time. 
 
Added items and inventory 
systems, and development of 
interactable tile elements. 

Help with email to 
Tom. 
 

Recommendation to 
start writing report 
now. 

 
Take research from 
user testing as 
deliberately limiting 
the number of 
variables. 

24/05/2024 
1. Action plan regarding 

deadline. 

Personal circumstances and high 
workloads in other modules set 
back progress in the artifacts 
development. Established plan of 
tasks to complete before July. 

12/04/2024 
meeting had to be 
cancelled with 
supervisor due to 
doctors 
appointment. 

10/06/2024 1. Dissertation Report 
Project development continued 
after burn-out break. Report 

 

https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
https://pavcreations.com/tilemap-based-a-star-algorithm-implementation-in-unity-game/#how-a-star-algorithm-works-the-basics
http://pcg.wikidot.com/pcg-algorithm:dungeon-generation
http://pcg.wikidot.com/pcg-algorithm:dungeon-generation
https://arxiv.org/abs/1912.10944
https://www.youtube.com/watch?v=i0Vt7l3XrIU
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.reddit.com/r/cellular_automata/comments/v36xjp/minecraft_biome_generation_explained_using/
https://www.alanzucconi.com/2020/07/27/the-ai-of-creatures/
https://www.alanzucconi.com/2020/07/27/the-ai-of-creatures/


2023/24  

 

   
Kieran De Sousa   19007744 

16 

writing for introduction and 
research methods. Began collating 
references in separate document. 

26/06/2024 1. Entity tiles 
Entity tiles (items) work 
completed. Utilise interfaces to 
allow for multiple inheritenance. 

 

29/06/2024 

1. Refactors of various 
systems 

 
2. ML agent behaviour 

tested. 

PCGSystems, PCGMethods, and 

tilemap systems fully refactored. 
Previous implementations now 
deprecated.  
 
Tested ML agent behaviour in 
controlling the player. More of the 
systems surrounding need 

development before work can be 
focused on ML. 

 

01/07/2024 1. Dissertation Report 
Report writing continued. Collated 
references for literature review to 
begin writing section. 

 

04/07/2024 1. Dissertation Report 
Literature review complete, and 
non-practice and conclusion 
sections. 

 

09/07/2024 
1. Trigger tilemap for 

interactions 
Dissertation report writing 
continued to this date.  

 

12/07/2024 

1. Collision detection fixes 

 
2. Fix critical bugs 

Fixed issues in collision detection 
with trigger items, as coordinates 
would not be accurate to the 
collision position translated in cell 
position. 

 
Fixed critical bugs were scripts 

were being directly modified, and 
these modifications would be 
passed permanently to other 
prefabs and objects. 

 

14/07/2024 
1. ML Agent Training 

successfully complete 

Trained ML agent output achieved. 
Will walk to doors to complete 
levels, avoid obstacles, and pickup 
items. Twitchy behaviour and too 
focused on beating levels. 

 

17/07/2024 

1. Engagement metrics 

 
2. Reward structure 

tweaks 

Added engagement metrics that 

assess played level. Used to 
weight generation of next room. 
Current metrics of items picked up 
and exploration. 
 

Rewarding mechanisms tweaked 

for agent to optimise behaviour. 
Rewarded for exploration. 

 

18/07/2024 
1. Dissertation report 
 
2. Artifact final tweaks 

Dissertation conclusion and notes 
complete. 
 
Added final code comments, and 

saving for high engagement 
rooms. 

 

19/07/2024 
1. Dissertation report 
 
2. Artifact final tweaks 

Dissertation transferred from note 
layout to required format. 
 

Final small bug fixes and project 
cleanup. Bug found with 
weightings, and fixed. 

 

 
 



2023/24  

 

   
Kieran De Sousa   19007744 

17 

Title Number Status Assignees Labels Author CreatedAt ClosedAt Type State
Create Tilemap System 1 Done Kieran De Sousa feature Kieran De Sousa 28/03/2024 13:35 27/06/2024 23:25 ISSUE CLOSED
Create Trigger Collider Tilemap Script 10 Done Kieran De Sousa feature Kieran De Sousa 30/06/2024 13:02 09/07/2024 23:44 ISSUE CLOSED
Add observations, OnEpisodeBegin TO MLAgent 11 Done Kieran De Sousa feature Kieran De Sousa 12/07/2024 14:48 14/07/2024 20:01 ISSUE CLOSED
Make system base class 12 Done Kieran De Sousa feature Kieran De Sousa 12/07/2024 15:10 12/07/2024 18:47 ISSUE CLOSED
Tweak A* Generation 13 Done Kieran De Sousa feature Kieran De Sousa 13/07/2024 22:05 18/07/2024 14:07 ISSUE CLOSED
Finish reward functionality 14 Done Kieran De Sousa feature Kieran De Sousa 14/07/2024 20:01 17/07/2024 22:29 ISSUE CLOSED
Fix Tile 2D array not being passed to children 15 Done Kieran De Sousa bug Kieran De Sousa 18/07/2024 11:01 19/07/2024 16:50 ISSUE CLOSED
Add final code comments 16 Done Kieran De Sousa documentation Kieran De Sousa 18/07/2024 15:39 18/07/2024 17:59 ISSUE CLOSED
Add Bootstrapper 2 Done Kieran De Sousa feature Kieran De Sousa 28/03/2024 13:41 28/03/2024 22:26 ISSUE CLOSED
Complete Entity Systems 3 Done Kieran De Sousa feature Kieran De Sousa 25/06/2024 21:21 26/06/2024 17:54 ISSUE CLOSED
Merge Inventory & Movement System --> ML Agents 4 Done Kieran De Sousa feature Kieran De Sousa 25/06/2024 21:23 30/06/2024 13:03 ISSUE CLOSED
Add Centre Position, and Door Locations as public variables 5 Done Kieran De Sousa feature Kieran De Sousa 26/06/2024 18:48 27/06/2024 23:24 ISSUE CLOSED
Complete Generate Doors and Generate Walls methods 6 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:26 29/06/2024 19:44 ISSUE CLOSED
Swap to Tile Map Implementation in PCG Methods Refactor 7 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:27 12/07/2024 14:44 ISSUE CLOSED
Implement A* Pathfinding Method 8 Done Kieran De Sousa feature Kieran De Sousa 27/06/2024 23:29 13/07/2024 21:22 ISSUE CLOSED
Add Code Comments to current work 9 Done Kieran De Sousa documentation Kieran De Sousa 29/06/2024 19:45 30/06/2024 13:49 ISSUE CLOSED

Appendix B: Project Timeline 

Appendix C: Assets used in the Project 
Tile assets: Kenney (2022) Tiny Dungeon. Available from: https://kenney.nl/assets/tiny-dungeon - CC0 
license. 
 
Tile assets: Edmund McMillen, EM. (2011) The Binding of Isaac. Available from: 
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/ - CC BY-NC-SA 3.0 license (from 

The Binding of Isaac Rebirth Wiki). 

 

https://kenney.nl/assets/tiny-dungeon
https://store.steampowered.com/app/113200/The_Binding_of_Isaac/

